【題目】如圖,已知等腰三角形ABC中,AB=AC,點D,E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.

(1)求證:∠ABE=∠ACD;

(2)求證:過點A、F的直線垂直平分線段BC.

【答案】(1)證明詳見解析(2) 證明詳見解析

【解析】

1)證得ABE≌△ACD后利用全等三角形的對應(yīng)角相等即可證得結(jié)論;

2)利用垂直平分線段的性質(zhì)即可證得結(jié)論.

1)在ABEACD中,

∴△ABE≌△ACD,

∴∠ABE=ACD

2)連接AF

AB=AC

∴∠ABC=ACB,

由(1)可知∠ABE=ACD,

∴∠FBC=FCB,

FB=FC,

AB=AC,

∴點A、F均在線段BC的垂直平分線上,

即直線AF垂直平分線段BC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

(進價、售價均保持不變,利潤 = 銷售收入-進貨成本)

1)求A、B兩種型號的電風(fēng)扇的銷售單價;

2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春夏來臨之際,天氣開始暖和,某商家抓住商機,在三月份力推甲、乙兩款兒童襯衣.已知三月份甲款襯衣的銷售總額為6000元,乙款襯衣的銷售總額為8100元,乙款襯衣的單價是甲款襯衣單價的1.5倍,乙款襯衣的銷售數(shù)量比甲款襯衣的銷售數(shù)量少5件.

1)求三月份甲款襯衣的單價是多少元?

2)四月份,該商家準(zhǔn)備銷售甲、乙兩款襯衣共200件,為了加大推銷力度,將甲款襯衣的單價在三月份的基礎(chǔ)上下調(diào)了20%,乙款襯衣的單價在三月份的基礎(chǔ)上打五折銷售.要使四月份的總銷售額不低于18720元,則該商家至少要賣出甲款襯衣多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知將一副三角板(直角三角板OAB和直角三角板OCD,AOB=90°,ABO=45°,CDO=90°,COD=60°)

(1)如圖1擺放,點O、A、C在一直線上,則∠BOD的度數(shù)是多少?

(2)如圖2,將直角三角板OCD繞點O逆時針方向轉(zhuǎn)動,若要OB恰好平分∠COD,則∠AOC的度數(shù)是多少?

(3)如圖3,當(dāng)三角板OCD擺放在∠AOB內(nèi)部時,作射線OM平分∠AOC,射線ON平分∠BOD,如果三角板OCD在∠AOB內(nèi)繞點O任意轉(zhuǎn)動,∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y1=(k10)與一次函數(shù)y2=k2x+1(k20)相交于A、B兩點,ACx軸于點C,若OAC的面積為1,且tanAOC=2.

(1)求出反比例函數(shù)與一次函數(shù)的解析式;

(2)請直接寫出B點的坐標(biāo),并指出當(dāng)x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個內(nèi)角分別是它們對角的一半的四邊形叫做半對角四邊形.

1)如圖1,在半對角四邊形ABCD中,BD,CA,求BC的度數(shù)之和;

(2)如圖2,銳角△ABC內(nèi)接于⊙O,若邊AB上存在一點D,使得BD=BO.∠OBA的平分線交OA于點E,連結(jié)DE并延長交AC于點F,∠AFE=2∠EAF.

求證:四邊形DBCF是半對角四邊形;

(3)如圖3,在(2)的條件下,過點DDG⊥OB于點H,交BC于點G.當(dāng)DH=BG時,求△BGH△ABC的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車油箱內(nèi)有油a升,從某地出發(fā),每行駛1小時耗油6,若設(shè)剩余油量為Q,行駛時間為t/小時,根據(jù)以上信息回答下列問題:

(1)開始時,汽車的油量a=_____升;

(2)_____小時汽車加油,加了_____升,

寫出加油前Qt之間的關(guān)系式______;

(3)這輛汽車行駛8小時,剩余油量多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2A型設(shè)備比購買3B型設(shè)備少6萬元.

A

B

價格萬元

a

b

處理污水量

240

200

ab的值;

治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認為該公司有哪幾種購買方案;

的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.

查看答案和解析>>

同步練習(xí)冊答案