【題目】如圖,已知平行于y軸的動(dòng)直線(xiàn)a的表達(dá)式為x=t,直線(xiàn)b的表達(dá)式為y=x,直線(xiàn)c的表達(dá)式為y=﹣x+2,且動(dòng)直線(xiàn)a分別交直線(xiàn)b、c于點(diǎn)D、E(E在D的上方),P是y軸上一個(gè)動(dòng)點(diǎn),且滿(mǎn)足△PDE是等腰直角三角形,則點(diǎn)P的坐標(biāo)是________.
【答案】, , ,
【解析】解:∵當(dāng)x=t時(shí),y=x=t;當(dāng)x=t時(shí),y=﹣x+2=﹣t+2,∴E點(diǎn)坐標(biāo)為(t,﹣t+2),D點(diǎn)坐標(biāo)為(t,t).
∵E在D的上方,∴DE=﹣t+2﹣t=﹣t+2,且t<.
∵△PDE為等腰直角三角形,∴PE=DE或PD=DE或PE=PD.
t>0時(shí),PE=DE時(shí),﹣t+2=t,∴t=,﹣t+2=.∴P點(diǎn)坐標(biāo)為(0, ).
①若t>0,PD=DE時(shí),﹣t+2=t,∴t=.∴P點(diǎn)坐標(biāo)為(0, );
②若t>0,PE=PD時(shí),即DE為斜邊,∴﹣ t+2=2t,∴t=,DE的中點(diǎn)坐標(biāo)為(t, t+1),∴P點(diǎn)坐標(biāo)為(0, );
若t<0,PE=DE和PD=DE時(shí),由已知得DE=﹣t,﹣ t+2=﹣t,t=4>0(不符合題意,舍去),此時(shí)直線(xiàn)x=t不存在;
③若t<0,PE=PD時(shí),即DE為斜邊,由已知得DE=﹣2t,﹣ t+2=﹣2t,∴t=﹣4, t+1=0,∴P點(diǎn)坐標(biāo)為(0,0).
綜上所述: P點(diǎn)坐標(biāo)為(0, )或(0, )或(0, )或(0,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,O是AC上一動(dòng)點(diǎn),過(guò)點(diǎn)O作直線(xiàn)MN∥BC,設(shè)MN交∠BCA的平分線(xiàn)于點(diǎn)E,交∠BCA的外角平分線(xiàn)于點(diǎn)F.若點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn),則∠ACB=_____°時(shí),四邊形AECF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D是AB的中點(diǎn),點(diǎn)E在DC的延長(zhǎng)線(xiàn)上,且CE=CD,過(guò)點(diǎn)B作BF∥DE交AE的延長(zhǎng)線(xiàn)于點(diǎn)F,交AC的延長(zhǎng)線(xiàn)于點(diǎn)G.
(1)求證:AB=BG;
(2)若點(diǎn)P是直線(xiàn)BG上的一點(diǎn),試確定點(diǎn)P的位置,使△BCP與△BCD相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當(dāng)△DCE旋轉(zhuǎn)至點(diǎn)A,D,E在同一直線(xiàn)上,連接BE.
填空:① ∠AEB的度數(shù)為_______;②線(xiàn)段AD、BE之間的數(shù)量關(guān)系是______.
(2)拓展研究:
如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線(xiàn)上,若AE=15,DE=7,求AB的長(zhǎng)度.
(3)探究發(fā)現(xiàn):
圖1中的△ACB和△DCE,在△DCE旋轉(zhuǎn)過(guò)程中當(dāng)點(diǎn)A,D,E不在同一直線(xiàn)上時(shí),設(shè)直線(xiàn)AD與BE相交于點(diǎn)O,試在備用圖中探索∠AOE的度數(shù),直接寫(xiě)出結(jié)果,不必說(shuō)明理由.
【答案】(1)60°.AD=BE;(2)AB=17;(3)∠AOE的度數(shù)是60°或120°.
【解析】試題分析:(1)由條件易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點(diǎn)A,D,E在同一直線(xiàn)上可求出∠ADC,從而可以求出∠AEB的度數(shù).
(2)仿照(1)中的解法可求出∠AEB的度數(shù),證出AD=BE;由△DCE為等腰直角三角形及CM為△DCE中DE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE.
(3)由(1)知△ACD≌△BCE,得∠CAD=∠CBE,由∠CAB=∠ABC=60°,可知∠EAB+∠ABE=120°,根據(jù)三角形的內(nèi)角和定理可知∠AOE=60°.
試題解析:(1)①∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°.
∵點(diǎn)A,D,E在同一直線(xiàn)上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC∠CED=60°.
故答案為:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案為:AD=BE.
(2)∵△ACB和△DCE均為等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴AD=BE=AE-DE=8,∠ADC=∠BEC,
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°.
∵點(diǎn)A,D,E在同一直線(xiàn)上,
∴∠ADC=135°.
∴∠BEC=135°.
∴∠AEB=∠BEC∠CED=90°.
∴AB==17;
(3)由(1)知△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠CAB=∠CBA=60°,
∴∠OAB+∠OBA=120°
∴∠AOE=180°120°=60°,
同理求得∠AOB=60°,
∴∠AOE=120°,
∴∠AOE的度數(shù)是60°或120°.
點(diǎn)睛:本題考查了等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形斜邊上的中線(xiàn)等于斜邊的一半、三角形全等的判定與性質(zhì)等知識(shí),考查了運(yùn)用已有的知識(shí)和經(jīng)驗(yàn)解決問(wèn)題的能力.
【題型】解答題
【結(jié)束】
26
【題目】如圖,直線(xiàn)MN:y=-x+b與x軸交于點(diǎn)M(4,0),與y軸交于點(diǎn)N,長(zhǎng)方形ABCD的邊AB在x軸上,AB=2,AD=1.長(zhǎng)方形ABCD由點(diǎn)A與點(diǎn)O重合的位置開(kāi)始,以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向作勻速直線(xiàn)運(yùn)動(dòng),當(dāng)點(diǎn)A與點(diǎn)M重合時(shí)停止運(yùn)動(dòng).設(shè)長(zhǎng)方形運(yùn)動(dòng)的時(shí)間為t秒,長(zhǎng)方形ABCD與△OMN重合部分的面積為S.
(1)求直線(xiàn)MN的解析式;
(2)當(dāng)t=1時(shí),請(qǐng)判斷點(diǎn)C是否在直線(xiàn)MN上,并說(shuō)明理由;
(3)請(qǐng)求出當(dāng)t為何值時(shí),點(diǎn)D在直線(xiàn)MN上;
(4)直接寫(xiě)出在整個(gè)運(yùn)動(dòng)過(guò)程中S與t的函數(shù)關(guān)系式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE與FC會(huì)平行嗎?說(shuō)明理由.
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫坐標(biāo)分別為整數(shù)的點(diǎn),其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2), (2,2)···根據(jù)這個(gè)規(guī)律,第140個(gè)點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從﹣3,﹣2,﹣1,0,1,3,4這七個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù)記為a,a的值既是不等式組 的解,又在函數(shù)y= 的自變量取值范圍內(nèi)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中, △ABC的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn)A'的坐標(biāo)是
(-2,2), 現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A',點(diǎn)B′、C′分別是B、C的對(duì)應(yīng)點(diǎn)。
(1)請(qǐng)畫(huà)出平移后的像△A'B'C'(不寫(xiě)畫(huà)法) ,并直接寫(xiě)出點(diǎn)B′、C′的坐標(biāo):
B′ ( ) 、C′ ( ) ;
(2)若△ABC 內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P 的對(duì)應(yīng)點(diǎn)P ′的坐標(biāo)是 ( ) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電力公司為鼓勵(lì)市民節(jié)約用電,采取按月用電量分段收費(fèi)辦法.若某戶(hù)居民每月應(yīng)交電費(fèi)y(元)與用電量x(度)的函數(shù)圖象是一條折線(xiàn)(如圖所示),根據(jù)圖象解下列問(wèn)題:
(1) 分別寫(xiě)出當(dāng)0≤x≤100和x>100時(shí),y與x的函數(shù)關(guān)系式
(2) 利用函數(shù)關(guān)系式,說(shuō)明電力公司采取的收費(fèi)標(biāo)準(zhǔn)
(3) 若該用戶(hù)某月用電62度,則應(yīng)繳費(fèi)多少元?若該用戶(hù)某月繳費(fèi)105元時(shí),則該用戶(hù)該月用了多少度電?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com