(2000•西城區(qū))已知:如圖,平行四邊形ABCD中,E是BC中點(diǎn),連接DE并延長,與AB的延長線交于點(diǎn)F.
求證:BF=CD.

【答案】分析:由于四邊形ABCD是平行四邊形,根據(jù)全等三角形的判定理理之一(角邊角或ASA),易證△EBF和△ECD全等,根據(jù)全等三角形的性質(zhì),所以BF=CD.
解答:證明:∵四邊形ABCD是平行四邊形,
∴AB∥DC,
∴∠EBF=∠C,
∵E是BC中點(diǎn),
∴BE=CE,
在△EBF和△ECD中,
,
∴△EBF≌△ECD(ASA).
∴BF=CD.
點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì)和全等三角形的判定和性質(zhì),利用平行四邊形的性質(zhì),獲得全等的條件是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2000•西城區(qū))已知:拋物線與拋物線在平面直角坐標(biāo)系xOy中的位置如圖所示,其中一條與x軸交于A、B兩點(diǎn).
(1)試判定哪條拋物線經(jīng)過A、B兩點(diǎn),并說明理由;
(2)若A、B兩點(diǎn)到原點(diǎn)的距離AO、OB滿足,求經(jīng)過A、B兩點(diǎn)的這條拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:解答題

(2000•西城區(qū))已知:反比例函數(shù)和一次函數(shù)y=mx+n圖象的一個(gè)交點(diǎn)為A(-3,4),且一次函數(shù)的圖象與x軸的交點(diǎn)到原點(diǎn)的距離為5,分別確定反比例函數(shù)與一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年北京市西城區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•西城區(qū))已知:拋物線與拋物線在平面直角坐標(biāo)系xOy中的位置如圖所示,其中一條與x軸交于A、B兩點(diǎn).
(1)試判定哪條拋物線經(jīng)過A、B兩點(diǎn),并說明理由;
(2)若A、B兩點(diǎn)到原點(diǎn)的距離AO、OB滿足,求經(jīng)過A、B兩點(diǎn)的這條拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年北京市西城區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•西城區(qū))已知:反比例函數(shù)和一次函數(shù)y=mx+n圖象的一個(gè)交點(diǎn)為A(-3,4),且一次函數(shù)的圖象與x軸的交點(diǎn)到原點(diǎn)的距離為5,分別確定反比例函數(shù)與一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2000•西城區(qū))已知:△ABC是⊙O的內(nèi)接三角形,BT為⊙O的切線,B為切點(diǎn),P為直線AB上一點(diǎn),過點(diǎn)P做BC的平行線交直線BT于點(diǎn)E,交直線AC于點(diǎn)F.

(1)當(dāng)點(diǎn)P在線段AB上時(shí)(如圖).求證:PA•PB=PE•PF;
(2)當(dāng)點(diǎn)P為線段BA延長線上一點(diǎn)時(shí),第(1)題的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說明理由;
(3)若,,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案