如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線點F.問:
(1)圖中△APD與哪個三角形全等?并說明理由;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.

【答案】分析:(1)根據(jù)已知利用SAS來判定兩三角形全等.
(2)根據(jù)每一問的結(jié)論及已知,利用兩組角相等則兩三角形相似來判定即可;
(3)根據(jù)相似三角形的對應邊成比例及全等三角形的對應邊相等即可得到結(jié)論.
解答:解:(1)△APD≌△CPD.
理由:∵四邊形ABCD是菱形,
∴AD=CD,∠ADP=∠CDP.
又∵PD=PD,
∴△APD≌△CPD.

證明:(2)∵△APD≌△CPD,
∴∠DAP=∠DCP,
∵CD∥AB,
∴∠DCF=∠DAP=∠CFB,
又∵∠FPA=∠FPA,
∴△APE∽△FPA.

猜想:(3)PC2=PE•PF.
理由:∵△APE∽△FPA,

∴PA2=PE•PF.
∵△APD≌△CPD,
∴PA=PC.
∴PC2=PE•PF.
點評:本題考查了相似三角形的判定,全等三角形的判定,菱形的性質(zhì)等知識點,本題中依據(jù)三角形的全等或相似得出線段的相等或比例關(guān)系是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點F是菱形ABDC對角線BC上一動點,EF∥AB,GF∥AC,菱形兩條對角線BC和AD的長分別為2cm、5cm,當點F在BC上移動時,陰影面積會改變嗎?如果不變,請求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延精英家教網(wǎng)長線于F.
(1)求證:∠DCP=∠DAP;
(2)若AB=2,DP:PB=1:2,且PA⊥BF,求對角線BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•蘇州)如圖,點P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長交邊AD于點F,交CD的延長線于點G.
(1)求證:△APB≌△APD;
(2)已知DF:FA=1:2,設(shè)線段DP的長為x,線段PF的長為y.
①求y與x的函數(shù)關(guān)系式;
②當x=6時,求線段FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆湖北省襄陽市襄州區(qū)中考適應性考試數(shù)學試卷(帶解析) 題型:解答題

如圖,點P是菱形ABCD對角線BD上一點,連接CP并延長交AD于點E,交BA的延長線于點F.

(1)求證:∠DCP=∠DAP;
(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求對角線BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年湖北省襄陽市襄州區(qū)中考適應性考試數(shù)學試卷(解析版) 題型:解答題

如圖,點P是菱形ABCD對角線BD上一點,連接CP并延長交AD于點E,交BA的延長線于點F.

(1)求證:∠DCP=∠DAP;

(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求對角線BD的長.

 

查看答案和解析>>

同步練習冊答案