【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,直至得到C6,若點P(11,m)在第6段拋物線C6上,則m=

【答案】﹣1.

【解析】

試題分析:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴頂點坐標(biāo)為(1,1),∴A1坐標(biāo)為(2,0).

∵C2由C1旋轉(zhuǎn)得到,∴OA1=A1A2,即C2頂點坐標(biāo)為(3,﹣1),A2(4,0);

照此類推可得,C3頂點坐標(biāo)為(5,1),A3(6,0);

C4頂點坐標(biāo)為(7,﹣1),A4(8,0);

C5頂點坐標(biāo)為(9,1),A5(10,0);

C6頂點坐標(biāo)為(11,﹣1),A6(12,0);

∴m=﹣1.

故答案為:﹣1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P的坐標(biāo)為(m,n),那么先向右平移2各單位長度,再向下平移1個單位長度后的對應(yīng)點P′的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a+b=8,ab=-2,則a2+b2=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下面的推理過程補充完整,并在括號內(nèi)注明理由.如圖,點B、D在線段AE上,BC∥EF,AD=BE,BC=EF,試說明:∠C=∠F;AC∥DF.

解:∵AD=BE(已知)
∴AD+DB=DB+BE(
即AB=DE
∵BC∥EF(已知)
∴∠ABC=∠
又∵BC=EF(已知)
∴△ABC≌△DEF(
∴∠C=∠F,∠A=∠FDE(
∴AC∥DF(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個長方形繞它的一條邊旋轉(zhuǎn)一周,所得的幾何體是(
A.圓柱
B.三棱柱
C.長方體
D.圓錐

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一列數(shù)-1,2,-3,4,-5,6,……,如圖所示有序排列.根據(jù)圖中排列規(guī)律可知,“峰1” 中峰頂位置(C的位置)是4,那么,“峰206”中C的位置的有理數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個棱柱有18條棱,那么它的底面一定是(
A.十八邊形
B.八邊形
C.六邊形
D.四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“經(jīng)過已知直線外一點作這條直線的垂線”的尺規(guī)作圖過程:

已知:直線l和l外一點P.(如圖1)

求作:直線l的垂線,使它經(jīng)過點P.

作法:如圖2

(1)在直線l上任取兩點A,B;

(2)分別以點A,B為圓心,AP,BP長為半徑作弧,兩弧相交于點Q;

(3)作直線PQ.

所以直線PQ就是所求的垂線.

請回答:該作圖的依據(jù)是

查看答案和解析>>

同步練習(xí)冊答案