【題目】學校環(huán)保小組的同學隨機調(diào)查了某小區(qū)10戶家庭一周內(nèi)使用環(huán)保方便袋的數(shù)量,數(shù)據(jù)如下(單位:只):6,5,7,8,7,5,7,10,6,9,利用學過的統(tǒng)計知識,根據(jù)上述數(shù)據(jù)估計該小區(qū)200戶家庭一周內(nèi)共需要環(huán)保方便袋約( )
A. 200只;B. 1400只;C. 9800只;D. 14000只.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線與x軸交于點、B,與y軸交于點C,對稱軸是直線.
求拋物線的解析式;
如圖,求外接圓的圓心M的坐標;
如圖,在BC的另一側(cè)作,射線CF交拋物線于點F,求點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x 2+bx+c與x軸交于A、B兩點,與y軸交于點C,已知經(jīng)過B、C兩點的直線的表達式為y=-x+3.
(1)求拋物線的函數(shù)表達式;
(2)點P(m,0)是線段OB上的一個動點,過點P作y軸的平行線,交直線BC于D,交拋物線于E,EF∥x軸,交直線BC于F,DG∥x軸,F(xiàn)G∥y軸,DG與FG交于點G.設四邊形DEFG的面積為S,當m為何值時S最大,最大值是多少?
(3)在坐標平面內(nèi)是否存在點Q,將△OAC繞點Q逆時針旋轉(zhuǎn)90°,使得旋轉(zhuǎn)后的三角形恰好有兩個頂點落在拋物線上.若存在,求出所有符合條件的點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李老師是我區(qū)“IDJP”課題研究的主要成員之一,一天他在視頻微課中提出了以下問題:如圖,AB,CD為圓形紙片中兩條互相垂直的直徑,將圓形紙片沿EF折疊,使B與圓心M重合,折痕EF與AB相交于N連結(jié)AE,AF.李老師提出兩個猜想和一個問題,請你證明或解答出來:
①四邊形MEBF是菱形;
②△AEF為等邊三角形;
③求S△AEF:S圓.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為推動“時刻聽黨話 永遠跟黨走”校園主題教育活動,計劃開展四項活動:A:黨史演講比賽,B:黨史手抄報比賽,C:黨史知識競賽,D:紅色歌詠比賽.校團委對學生最喜歡的一項活動進行調(diào)查,隨機抽取了部分學生,并將調(diào)查結(jié)果繪制成圖1,圖2兩幅不完整的統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:
(1)本次共調(diào)查了 名學生;
(2)將圖1的統(tǒng)計圖補充完整;
(3)已知在被調(diào)查的最喜歡“黨史知識競賽”項目的4個學生中只有1名女生,現(xiàn)從這4名學生中任意抽取2名學生參加該項目比賽,請用畫樹狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】E-learning即為在線學習,是一種新型的學習方式.某網(wǎng)站提供了A、B兩種在線學習的收費方式.A種:在線學習10小時(包括10小時)以內(nèi),收取費用5元,超過10小時時,在收取5元的基礎上,超過部分每小時收費0.6元(不足1小時按1小時計);B種:每月的收費金額(元)與在線學習時間是(時)之間的函數(shù)關系如圖所示.
(1)按照B種方式收費,當時,求關于的函數(shù)關系式.
(2)如果小明三月份在這個網(wǎng)站在線學習,他按照A種方式支付了20元,那么在線學習的時間最多是多少小時?如果該月他按照B 種方式付費,那么他需要多付多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一批貨物準備運往某地,有甲、乙、丙三輛卡車可雇用.已知甲、乙、丙三輛車每次運貨量不變,且甲、乙兩車單獨運完這批貨物分別用次;甲、丙兩車合運相同次數(shù),運完這批貨物,甲車共運噸;乙、丙兩車合運相同次數(shù),運完這批貨物乙車共運噸,現(xiàn)甲、乙、丙合運相同次數(shù)把這批貨物運完,貨主應付甲車主的運費為___________ 元.(按每噸運費元計算)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解全區(qū)5000名初中畢業(yè)生的體重情況,隨機抽測了200名學生的體重,頻率分布如圖所示(每小組數(shù)據(jù)可含最小值,不含最大值),其中從左至右前四個小長方形的高依次為0.02、0.03、0.04、0.05,由此可估計全區(qū)初中畢業(yè)生的體重不小于60千克的學生人數(shù)約為___人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)在對稱軸上是否存在一點M,使△ANM的周長最小.若存在,請求出M點的坐標和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com