【題目】如圖, E,F(xiàn),G,H 分別是任意四邊形 ABCD AD,BD,CA,BC 的中點若四邊形 EFGH 是菱形,則四邊形 ABCD 的邊需滿足的條件是(

A. AB∥DC B. AC=BD C. AC⊥BD D. AB=DC

【答案】D

【解析】

由點 E、F、G、H 分別是任意四邊形 ABCD AD、BD、BC、CA 的中點

據(jù)三角形中位線的性質(zhì), 可得 又由當(dāng)

EF=FG=GH=EH ,四邊形 EFGH 是菱形即可求得答案

解:∵點 E、F、G、H 分別是任意四邊形 ABCD AD、BD、BC、CA 的中點,

∵當(dāng) EF=FG=GH=EH 時,四邊形 EFGH 是菱形,

∴當(dāng) AB=CD 時,四邊形 EFGH 是菱形.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,A0,4),B80),C8,4).

1)試說明四邊形AOBC是矩形.

2)在x軸上取一點D,將△DCB繞點C順時針旋轉(zhuǎn)90°得到△D'CB'(點D'與點D對應(yīng)).

①若OD3,求點D'的坐標(biāo).

②連接AD'、OD',則AD'+OD'是否存在最小值,若存在,請直接寫出最小值及此時點D'的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次籃球比賽中,如圖隊員甲正在投籃.已知球出手時離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時達(dá)到最大高度4 m,設(shè)籃球運行軌跡為拋物線,籃圈距地面3 m.

(1)建立如圖所示的平面直角坐標(biāo)系,問此球能否準(zhǔn)確投中?

(2)此時,對方隊員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實驗探究:

(1)如圖1,對折矩形紙片ABCD,使ADBC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.

(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MNBM的數(shù)量關(guān)系,寫出折疊方案,并結(jié)合方案證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用圖象法解某二元一次方程組時,在同一直角坐標(biāo)系中作出相應(yīng)的兩個一次函數(shù)的圖象(如圖所示),則所解的二元一次方程組是( ).

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:我們學(xué)過一次函數(shù)的圖象的平移,如:將一次函數(shù)的圖象沿軸向右平移個單位長度可得到函數(shù)的圖象,再沿軸向上平移個單位長度,得到函數(shù)的圖象;如果將一次函數(shù)的圖象沿軸向左平移個單位長度可得到函數(shù)的圖象,再沿軸向下平移個單位長度,得到函數(shù)的圖象.類似地,形如的函數(shù)圖象的平移也滿足此規(guī)律.

仿照上述平移的規(guī)律,解決下列問題:

1)將一次函數(shù)的圖象沿軸向右平移個單位長度,再沿軸向上平移個單位長度,得到函數(shù)________的圖象(不用化簡);

2)將的函數(shù)圖象沿y軸向下平移個單位長度,得到函數(shù)________________的圖象,再沿軸向左平移個單位長度,得到函數(shù)_________________的圖象(不用化簡);

3)函數(shù)的圖象可看作由的圖象經(jīng)過怎樣的平移變換得到?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點,A11),在x軸上確定點P,使AOP為等腰三角形,則符合條件的點P的個數(shù)共有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某?萍紝嵺`社團(tuán)制作實踐設(shè)備,小明的操作過程如下:

①小明取出老師提供的圓形細(xì)鐵環(huán),先通過在圓一章中學(xué)到的知識找到圓心O,再任意找出圓O的一條直徑標(biāo)記為AB(如圖1),測量出AB=4分米;

②將圓環(huán)進(jìn)行翻折使點B落在圓心O的位置,翻折部分的圓環(huán)和未翻折的圓環(huán)產(chǎn)生交點分別標(biāo)記為C、D(如圖2);

③用一細(xì)橡膠棒連接C、D兩點(如圖3);

④計算出橡膠棒CD的長度.

小明計算橡膠棒CD的長度為( )

A. 2分米 B. 2分米 C. 3分米 D. 3分米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為( 。

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

同步練習(xí)冊答案