【題目】已知四邊形ABCD是正方形,F是邊AB,BC上一動(dòng)點(diǎn),DE⊥DF,且DE=DF,M為EF的中點(diǎn).
(1)當(dāng)點(diǎn)F在邊AB上時(shí)(如圖①).
①求證:點(diǎn)E在直線BC上;
②若BF=2,則MC的長(zhǎng)為多少.
(2)當(dāng)點(diǎn)F在BC上時(shí)(如圖②),求的值.
【答案】(1)①證明見(jiàn)解析;②;(2) .
【解析】
(1)①連接CE,證明△ADF≌△CDE,得到∠DCE=∠DAF=90°即可;
②作FK∥MC,證明CM=FK,求出FK=BF即可;
(2)過(guò)點(diǎn)E作CD的平行線分別交AD、BC的延長(zhǎng)線于K、Q,EN∥MC,根據(jù)平行線等分線段定理即可解答.
(1)①證明:如圖①,連接CE.
∵DE⊥DF,∴∠FDE=90°.
∵四邊形ABCD是正方形,
∴∠ADC=∠DAF=∠DCB=90°,
DA=DC.
∴∠ADC-∠FDC=∠FDE-∠FDC,
即∠ADF=∠CDE.
又∵DF=DE,
∴△DAF≌△DCE(SAS).
∴∠DAF=∠DCE=90°,
∴∠DCE+∠DCB=180°.
∴點(diǎn)E在直線BC上.
②如圖①,作FK∥MC,∵M為EF的中點(diǎn),
∴CM=FK,
∵∠DMB=∠DCB=90°,
∴D、M、C、B四點(diǎn)共圓,
∴∠MCD=∠MBD=45°,
∴∠BKF=45°,
∵BF=2,∴FK=2,
∴CM=FK=;
(2) 過(guò)點(diǎn)E作CD的平行線分別交AD、BC的延長(zhǎng)線于K、G,EN∥MC,
∵M為EF的中點(diǎn),
∴CM=NE,FC=CN,
∴NG=EG=BF,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,一次函數(shù)y=kx+3的圖象經(jīng)過(guò)點(diǎn)A(1,4).
(1)求這個(gè)一次函數(shù)的解析式;
(2)試判斷點(diǎn)B(-1,5),C(0,3),D(2,1)是否在這個(gè)一次函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校準(zhǔn)備購(gòu)進(jìn)一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價(jià)各是多少元;
(2)學(xué)校準(zhǔn)備購(gòu)進(jìn)這兩種型號(hào)的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢(qián)的購(gòu)買(mǎi)方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰Rt△ABC的直角邊為1,以Rt△ABC的斜邊AC為直角邊,畫(huà)第二個(gè)等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊.畫(huà)第三個(gè)Rt△ADE,…,依此類推直到第五個(gè)等腰Rt△AFG,則由這五個(gè)等腰直角三角形所構(gòu)成的圖形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校體育社團(tuán)在校內(nèi)開(kāi)展“你最喜歡的體育項(xiàng)目是什么?四項(xiàng)選一項(xiàng)”調(diào)查,對(duì)九年級(jí)學(xué)生隨機(jī)抽樣,并將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖,解答下列問(wèn)題:
(1)本次抽樣人數(shù)有________人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)該校九年級(jí)共有600名學(xué)生,估計(jì)九年級(jí)最喜歡跳繩項(xiàng)目的學(xué)生有________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A,B兩點(diǎn),與反比例函數(shù) 的圖象交于C,D兩點(diǎn),DE⊥x軸于點(diǎn)E,已知C點(diǎn)的坐標(biāo)是(6,﹣1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(1,0),C(3,0),D(3,4).以A為頂點(diǎn)的拋物線y=ax2+bx+c過(guò)點(diǎn)C.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P,Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位.運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)過(guò)點(diǎn)E作EF⊥AD于F,交拋物線于點(diǎn)G,當(dāng)t為何值時(shí),△ACG的面積最大?最大值為多少?
(3)在動(dòng)點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使以C,Q,E,H為頂點(diǎn)的四邊形為菱形?請(qǐng)直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)械廠甲、乙兩個(gè)生產(chǎn)車間承擔(dān)生產(chǎn)同一種零件的任務(wù),甲、乙兩車間共有人,甲車間平均每人每天生產(chǎn)零件個(gè).乙車間平均每人每天生產(chǎn)零件個(gè),甲車間每天生產(chǎn)零件總數(shù)與乙車間每天生產(chǎn)零件總數(shù)之和為個(gè).
(1)求甲、乙兩車間各有多少人?
(2)該機(jī)械廠改進(jìn)了生產(chǎn)技術(shù).在甲、乙兩車間總?cè)藬?shù)不變的情況下,從甲車間調(diào)出一部分人到乙車間.調(diào)整后甲車間平均每人每天生產(chǎn)零件個(gè),乙車間平均每人每天生產(chǎn)零件個(gè),若甲車間每天生產(chǎn)零件總數(shù)與乙車間每天生產(chǎn)零件總數(shù)之和不少于個(gè),求從甲車間最多調(diào)出多少人到乙車間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板按如圖所示的方式疊放在一起,兩直角頂點(diǎn)重合于點(diǎn)O.
(1)求∠AOD+∠BOC的度數(shù);
(2)當(dāng)AB的中點(diǎn)E恰好落在CD的中垂線上時(shí),求∠AOC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com