【題目】已知,在ABC中,∠ABC90°

1)如圖1,分別過A、C兩點作經(jīng)過點B的直線MN的垂線,垂足分別為M、N

①求證:AMB∽△BNC;

②若AMB∽△ABC,求證:ACAM+CN;

2)如圖2,點DCA延長線上的一點,DEEB,AEABADBCCA335,求的值.

【答案】1)①見解析,②見解析;(2

【解析】

1)①根據(jù)同角的余角相等得到∠BAM=CBN,根據(jù)兩角相等的兩個三角形相似證明結(jié)論;

②作BHAC,證明△BAM≌△BAH,根據(jù)全等三角形的性質(zhì)得到AH=AM,同理得到CH=CN,證明結(jié)論;

2)過點AAGBEG,過點CCHBEEB的延長線于H,根據(jù)平行線分線段成比例定理得到,根據(jù)△AGB∽△BHC,得到,計算即可.

1)①∵∠ABC90°,

∴∠ABM+CBN90°,

AMBM

∴∠ABM+BAM90°,

∴∠BAM=∠CBN

∵∠BAM=∠CBN,∠AMB=∠BNC90°

∴△AMB∽△BNC;

②如圖1,作BHACH

則∠AHB=∠ABC90°,又∠BAH=∠CAB

∴△AHB∽△ABC,

∵△AMB∽△ABC,

∴△AMB∽△AHB,

∴∠BAM=∠BAH,

在△BAM和△BAH中,

,

∴△BAM≌△BAHAAS

AHAM,

同理可證,CHCN,

ACAH+CHAM+CN;

2)如圖2,過點AAGBEG,過點CCHBEEB的延長線于H,

∵∠DEB90°

CHAGDE,

RtABC中,

,

由(1)①可知,△AGB∽△BHC

,

AEABAGBE,

EGGB

,

EGBGBH332,

設(shè)EG3a,則BG3a,BH2a,

,

解得,,

由勾股定理得,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的半徑為于點D,點C上一動點,以BC為邊向下作等邊

當點C運動到時,

求證:BC相切;

試判斷點A是否在上,并說明理由.

設(shè)的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動點PA點出發(fā),按A→B→C的方向在ABBC上移動,記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于,兩點.

1)求該拋物線的解析式;

2)拋物線的對稱軸上是否存在一點,使的周長最小?若存在,請求出點的坐標,若不存在,請說明理由.

3)設(shè)拋物線上有一個動點,當點在該拋物線上滑動到什么位置時,滿足,并求出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把圖1稱為一個基本圖形,顯然這個基本圖形中有6個矩形,將此基本圖形不斷復(fù)制并向上平移、疊加,這樣得到圖2,圖3…(如圖所示)

1)觀察圖形,完成如表:

圖形名稱

矩形個數(shù)

1

6

2

18

3

36

4

60

5

   

2)根據(jù)以上規(guī)律猜想,圖形n中共有多少個矩形(用含n的代數(shù)式表示)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了維護國家主權(quán)和海洋權(quán)利,我國海監(jiān)部門對中國海域?qū)崿F(xiàn)常態(tài)化管理.某日,我國海監(jiān)船在某海島附近的海域執(zhí)行巡邏任務(wù).如圖,此時海監(jiān)船位于海島P的北偏東30°方向,距離海島100海里的A處,它沿正南方向航行一段時間后,到達位于海島P的南偏東45°方向的B處,求海監(jiān)船航行了多少海里(結(jié)果保留根號)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y軸,x軸分別相交于點A、B.點Dx軸上動點,點D從點B出發(fā)向原點O運動,點E在點D右側(cè),DE=2BD.過點DDHAB于點H,將△DBH沿直線DH翻折,得到△DCH,連接CE.設(shè)BD=t,△DCE與△AOB重合部分面積為S.求:

1)求線段BC的長(用含t的代數(shù)式表示);

2)求S關(guān)于t的函數(shù)解析式,并直接寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點C⊙O上,過點C的直線與AB的延長線交于點P,ACPC,∠COB2∠PCB

1)求證:PC⊙O的切線;

2)點M的中點,CMAB于點N,若AB6,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(-1.50),B(0,2),將△ABO順著x軸的正半軸無滑動的滾動,第一次滾動到①的位置,點B的對應(yīng)點記作B1;第二次滾動到②的位置,點B1的對應(yīng)點記作B2;第三次滾動到③的位置,點B2的對應(yīng)點記作B3;;依次進行下去,則點B2020的坐標為__________

查看答案和解析>>

同步練習(xí)冊答案