【題目】已知一次函數y=kx+b的圖象過A(1,1)和B(2,﹣1)
(1)求一次函數y=kx+b的表達式;
(2)求直線y=kx+b與坐標軸圍成的三角形的面積;
(3)將一次函數y=kx+b的圖象沿y軸向下平移3個單位,則平移后的函數表達式為 ,再向右平移1個單位,則平移后的函數表達式為 .
【答案】(1)y=﹣2x+3;(2);(3)y=﹣2x,y=﹣2x+2
【解析】
(1)把A、B兩點代入可求得k、b的值,可得到一次函數的表達式;
(2)分別令y=0、x=0可求得直線與兩坐標軸的兩交點坐標,可求得所圍成的三角形的面積;
(3)根據上加下減,左加右減的法則可得到平移后的函數表達式.
解:(1)∵一次函數y=kx+b的圖象過A(1,1)和B(2,﹣1),
∴,解得,
∴一次函數為y=﹣2x+3;
(2)在y=﹣2x+3中,分別令x=0、y=0,
求得一次函數與兩坐標軸的交點坐標分別為(0,3)、(,0),
∴直線與兩坐標軸圍成的三角形的面積為:S=×3×=;
(3)將一次函數y=﹣2x+3的圖象沿y軸向下平移3個單位,則平移后的函數表達式為y=﹣2x,再向右平移1個單位,則平移后的函數表達式為y=﹣2(x﹣1),即y=﹣2x+2
故答案為:y=﹣2x,y=﹣2x+2.
科目:初中數學 來源: 題型:
【題目】青島某高中允許高三學生從寄宿、走讀兩種方式中選擇一種就讀,今年新高三學生總人數與去年相比增加了6%,其中選擇寄宿的學生增加了20%,選擇走讀的學生減少了15%,若去年高三學生的總數為500人,求今年新高三學生選擇寄宿和走讀的人數分別是什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,FG∥BE交AE于點G.
(1)求證:GF=BF;
(2)若EB=1,BC=4,求AG的長;
(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FOED=ODEF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經過點C,且AD⊥MN于點D,BE⊥MN于點E.
(1)當直線MN繞點C旋轉到圖(1)的位置時,求證:DE=AD+BE;
(2)當直線MN繞點C旋轉到圖(2)的位置時,求證:DE=AD-BE;
(3)當直線MN繞點C旋轉到圖(3)的位置時,試問:DE,AD,BE有怎樣的等量關系?請寫出這個等量關系,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,∠A=∠EDF,再添加一個條件,可使△ABC ≌ △DEF,下列條件不符合的是
A.∠B=∠EB.BC∥EFC.AD=CFD.AD=DC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.
(1)求證:AC是⊙O的切線;
(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個數是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/s秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動,點P運動到F點時停止運動,點Q也同時停止運動,當點P運動__秒時,以P、Q、E、F為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,傅家堰中學新修了一個運動場,運動場的兩端為半圓形,中間區(qū)域為足球場,外面鋪設有塑膠環(huán)形跑道,四條跑道的寬均為1米.
(1)用含a、b的代數式表示塑膠環(huán)形跑道的總面積;
(2)若a=60米,b=20米,每鋪1平方米塑膠需120元,求四條跑道鋪設塑膠共花費多少元?(π=3)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com