【題目】如圖,ABCD的對角線AC、BD相交于點O,AE=CF.

(1) 求證:BOE≌△DOF;

(2) 連接DE、BF,若BDEF,試探究四邊形EBDF的形狀,并對結(jié)論給予證明.

【答案】(1)見解析;(2)四邊形EBDF為菱形,理由見解析

【解析】

(1)根據(jù)平行四邊形的性質(zhì)可得BO=DO,AO=CO,再利用等式的性質(zhì)可得EO=FO,然后再利用SAS定理判定BOE≌△DOF即可;

(2)根據(jù)BO=DO,F(xiàn)O=EO可得四邊形BEDF是平行四邊形,再根據(jù)對角線互相垂直的平行四邊形是菱形可得四邊形EBDF為菱形.

證明:(1) ∵四邊形ABCD是平行四邊形,

BO=DO,AO=CO,

AE=CF,

AO﹣AE=CO﹣FO,

EO=FO,

BOEDOF

,

∴△BOE≌△DOF(SAS);

(2) 四邊形EBDF為菱形,等三角形的判定,以及菱形的判定,關(guān)鍵是掌握

理由:∵BO=DO,F(xiàn)O=EO,

∴四邊形BEDF是平行四邊形,

BDEF,

∴四邊形EBDF為菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)如圖1,△ABC中,∠BAC=90°,AB=AC,AE是過A點的一條直線,且B、C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E,求證:BD=DE+CE.

(2)若直線AE繞點A旋轉(zhuǎn)到圖2的位置時(BD<CE),其余條件不變,問BD與DE、CE的關(guān)系如何?請予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個圖形通過兩種不同的方法計算它的面積,可以得到一個數(shù)學(xué)等式,例如圖1可以得到,請解答下列問題:

(1)寫出圖2中所表示的數(shù)學(xué)等式;

(2)根據(jù)整式乘法的運算法則,通過計算驗證上述等a式;

(3)a+b+c=l0,ab+ac+bc=35,利用得到的結(jié)論,求.的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,直線a:y=2x﹣6,和直線b:y=﹣ x+4相交于點H,分別與x、y軸交于點A、B、C、D,點P在x軸上,過點P作x軸的垂線,分別與直線a、b交于點E、F.

(1)求點H的坐標;
(2)判斷直線a、b的位置關(guān)系,并說明理由;
(3)設(shè)點P的橫坐標為m,當m為何值時,以D、E、F、O為頂點的四邊形是
平行四邊形,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的位置如右圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CBx軸于點A1,作正方形A1B1C1C;延長C1B1x軸于點A2,作正方形A2B2C2C1,…按這樣的規(guī)律進行下去,第2017個正方形的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小龍在學(xué)校組織的社會調(diào)查活動中負責了解他所居住的小區(qū)450戶居民的家庭收入情況、他從中隨機調(diào)查了40戶居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.

分組

頻數(shù)

百分比

600≤x800

2

5%

800≤x1000

6

15%

1000≤x1200

45%

9

22.5%

1600≤x1800

2

合計

40

100%

根據(jù)以上提供的信息,解答下列問題:
1)補全頻數(shù)分布表;
2)補全頻數(shù)分布直方圖;
3)請你估計該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市路橋公司決定對A、B兩地之間的公路進行改造,并由甲工程隊從A地向B地方向修筑,乙工程隊從B地向A地方向修筑.已知甲工程隊先施工2天,乙工程隊再開始施工,乙工程隊施工幾天后因另有任務(wù)提前離開,余下的任務(wù)由甲工程隊單獨完成,直到公路修通.甲、乙兩個工程隊修公路的長度y(米)與施工時間x(天)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙工程隊每天修公路240米;②甲工程隊每天修公路120米;③甲比乙多工作6天;④A、B兩地之間的公路總長是1680米.其中正確的說法有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,,直線軸于點,平移線段,若點的對應(yīng)點分別為,則線段的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+5x+3﹣3m=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為負整數(shù),求此時方程的根.

查看答案和解析>>

同步練習(xí)冊答案