精英家教網 > 初中數學 > 題目詳情

【題目】已知如圖,COD=90°,直線AB與OC交于點B,與OD交于點A,射線OE和射線AF交于點G.

(1)若OE平分BOA,AF平分BAD,OBA=30°,則OGA= .

(2)若GOA=BOA,GAD=BAD,OBA=30°,則OGA= .

(3)將(2)中“∠OBA=30°”改為“∠OBA=α”,其余條件不變,則OGA= (用含α的代數式表示)

(4)若OE將BOA分成1:2兩部分,AF平分BAD,ABO=α(30°α<90°),求OGA的度數(用含α的代數式表示)

【答案】(1)15°;(2)10°;(3)α;(4)α+15°α-15°

【解析】

試題分析:(1)由于BAD=ABO+BOA=α+90°,由AF平分BAD得到FAD=BAD,而FAD=EOD+OGA,2×45°+2OGA=α+90°,則OGA=α,然后把α=30°代入計算即可;

(2)由于GOA=BOA=30°GAD=BAD,OBA=α,根據FAD=EOD+OGA得到3×30°+3OGA=α+90°,則OGA=α,然后把α=30°代入計算;

(3)由(2)得到OGA=α;

(4)討論:當EOD:COE=1:2時,利用BAD=ABO+BOA=α+90°,FAD=EOD+OGA得到2×30°+2OGA=α+90°,則OGA=α+15°;

EOD:COE=2:1時,則EOD=60°,同理得OGA=α-15°

試題解析:(1)15°;

(2)10°;

(3)α

(4)當EOD:COE=1:2時,

EOD=30°,

∵∠BAD=ABO+BOA=α+90°

而AF平分BAD,

∴∠FAD=BAD,

∵∠FAD=EOD+OGA,

2×30°+2OGA=α+90°,

∴∠OGA=α+15°;

EOD:COE=2:1時,則EOD=60°,

同理得到OGA=α-15°,

OGA的度數為α+15°α-15°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我市某中學七、八年級各選派10名選手參加學校舉辦的愛我荊門知識競賽,計分采用10分制,選手得分均為整數,成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀.這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分的選手人數分別為a,b

隊別

平均分

中位數

方差

合格率

優(yōu)秀率

七年級

6.7

m

3.41

90%

n

八年級

7.1

7.5

1.69

80%

10%

1)請依據圖表中的數據,求a,b的值;

2)直接寫出表中的m,n的值;

3)有人說七年級的合格率、優(yōu)秀率均高于八年級,所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4,BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DGAE,垂足為G,若DG=1,則AE的邊長為(

A2 B4 C4 D8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列命題中,正確的有(

①RtABC中,已知兩邊長分別為34,則第三邊長為5

有一個內角等于其他兩個內角和的三角形是直角三角形;

三角形的三邊分別為a,b,C,若a2+c2=b2,那么C=90°;

ABC中,ABC=156,則ABC是直角三角形.

A1 B2 C3 D4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】以下各組線段為邊不能組成三角形的是( 。

A. 1,5,6 B. 4,3,3 C. 2,5,4 D. 5,8,4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有一組數據:1,3,3,4,5,這組數據的眾數為( )

A.1 B.3 C.4 D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩同學用一副撲克牌中牌面數字分別是:3,4,5,6的4張牌做抽數學游戲.游戲規(guī)則是:將這4張牌的正面全部朝下,洗勻,從中隨機抽取一張,抽得的數作為十位上的數字,然后,將所抽的牌放回,正面全部朝下、洗勻,再從中隨機抽取一張,抽得的數作為個位上的數字,這樣就得到一個兩位數.若這個兩位數小于45,則甲獲勝,否則乙獲勝.你認為這個游戲公平嗎?請運用概率知識說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知下列結論:①在數軸上的點只能表示無理數;②任何一個無理數都能用數軸上的點表示;③實數與數軸上的點一一對應;④有理數有無限個,無理數有限個,其中正確的結論是( )
A.①②
B.②③
C.③④
D.②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(一1,0).

(1)求拋物線的解析式及頂點D的坐標;

(2)判斷ABC的形狀,證明你的結論;

(3)點M是拋物線對稱軸上的一個動點,當ACM周長最小時,求點M的坐標及ACM的最小周長.

查看答案和解析>>

同步練習冊答案