【題目】如圖,AB∥CD,AD=CD,∠1=70°,則∠2的度數(shù)是( 。

A.20°
B.35°
C.40°
D.70°

【答案】C
【解析】∵AB∥CD,∴∠ACD=∠1=70°.∵AD=CD,∴∠DAC=∠ACD=70°,∴∠2=180°﹣∠DAC﹣∠ACD=180°﹣70°﹣70°=40°.故選C.
【考點精析】關(guān)于本題考查的平行線的性質(zhì)和三角形的內(nèi)角和外角,需要了解兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦校級籃球賽,進(jìn)入決賽的隊伍有A、B、C、D,要從中選出兩隊打一場比賽.
(1)若已確定A打第一場,再從其余三隊中隨機選取一隊,求恰好選中D隊的概率.
(2)請用畫樹狀圖或列表法,求恰好選中B、C兩隊進(jìn)行比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點E,F(xiàn)分別在AB,DC上,且ED⊥DB,F(xiàn)B⊥BD.

(1)求證:△AED≌△CFB
(2)若∠A=30°,∠DEB=45°,求證:DA=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店張阿姨以每斤2元的價格購進(jìn)某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是  斤。(用含x的代數(shù)式表示)
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+mx+n的圖象經(jīng)過點P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m、n的值
(2)如圖,一次函數(shù)y=kx+b的圖象經(jīng)過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,點B在點P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東53°方向,距離燈塔100海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東45°方向上的B處.
(參考數(shù)據(jù):sin53°=0.80,cos53°=0.60,tan53°=0.33,=1.41)

(1)在圖中畫出點B,并求出B處與燈塔P的距離(結(jié)果取整數(shù));
(2)用方向和距離描述燈塔P相對于B處的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結(jié)BD,則對角線BD的最小值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=AB=BC,連接AC,且∠ACD=30°,tan∠BAC=,CD=3,則AC= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標(biāo)為2,連結(jié)AM、BM.

(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說明理由
(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當(dāng)m滿足什么條件時,平移后的拋物線總有不動點.

查看答案和解析>>

同步練習(xí)冊答案