【題目】如圖,△ABC內(nèi)接于⊙O,AB=BC,直徑MN⊥BC于點D,與AC邊相交于點E,若⊙O的半徑為2,OE=2,則OD的長為_____.
【答案】2
【解析】
連接BO并延長交AC于F,如圖,先利用垂徑定理得到BF⊥AC,BD=CD,再證明Rt△BOD∽Rt△EOF得到, 則設(shè)OF=x,則OD=x, 接著證明Rt△DBO∽Rt△DEC,利用相似比得到, 所以DB2=3x2+2x然后利用勾股定理得到關(guān)于x的方程,最后解方程求出x后,計算x即可.
解:連接BO并延長交AC于F,如圖,
∵BA=BC,
∴,
∴BF⊥AC,
∵直徑MN⊥BC,
∴BD=CD,
∵∠BOD=∠EOF,
∴Rt△BOD∽Rt△EOF,
∴,
設(shè)OF=x,則OD=x,
∵∠DBO=∠DEC,
∴Rt△DBO∽Rt△DEC,
∴,即,
而BD=CD,
∴x,
在Rt△OBD中,,解得(舍去),
∴OD=x=2.
故答案為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知□ABCD的兩邊AB、BC的長是關(guān)于x的一元二次方程方程的兩個實數(shù)根.
(1)試說明:無論m取何值,原方程總有兩個實數(shù)根;
(2)當m為何值時,□ABCD是菱形?求出這時菱形的邊長;
(3)若AB﹦2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點M、N.
(1)當∠MAN繞點A旋轉(zhuǎn)到BM=DN時(如圖1),請你直接寫出BM、DN和MN的數(shù)量關(guān)系:__________.
(2)當∠MAN繞點A旋轉(zhuǎn)到BM≠DN時(如圖2),(1)中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)當∠MAN繞點A旋轉(zhuǎn)到如圖3的位置時,線段BM、DN和MN之間又有怎樣的數(shù)量關(guān)系?請寫出直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與x軸交于A,B兩點(點A在點B右側(cè)),與y軸交于點C,點D是拋物線的頂點.
(1)如圖1,連接AC、BC,若點P是直線AC上方拋物線上一動點,過點P作PE//BC交于點E,作PQ//y軸交AC于點Q,當△PQE周長最大時,若點M在y軸上,點N在x軸上,求PM+MNAN的最小值;
(2)如圖2,點G為x軸正半軸上一點,且OG=OC,連接CG,過點作于點,將繞點順時針旋轉(zhuǎn),記旋轉(zhuǎn)中的為△,在旋轉(zhuǎn)過程中,直線,分別與直線交于點,,△能否成為等腰三角形?若能請直接寫出所有滿足條件的的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,函數(shù)y=ax2﹣2ax﹣4a(x≥0)的圖象記為M1,函數(shù)y=﹣ax2﹣2ax+4a(x<0)的圖象記為M2,其中a為常數(shù),且a≠0,圖象M1,M2合起來得到的圖象記為M.
(1)當圖象M1的最低點到x軸距離為3時,求a的值.
(2)當a=1時,若點(m,)在圖象M上,求m的值,
(3)點P、Q的坐標分別為(﹣5,﹣1),(4,﹣1),連結(jié)PQ.直接寫出線段PQ與圖象M恰有3個交點時a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,以AB為直徑作⊙O交邊BC于點D,過點D作DE⊥AC交AC于點E,延長ED交AB的延長線于點F.
(1)求證:DE是⊙O的切線;
(2)若AB=8,AE=6,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)探究活動課中,某同學(xué)有一塊矩形紙片,已知,,為射線上的一個動點,將沿折疊得到,若是直角三角形,則所有符合條件的點所對應(yīng)的的和為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AOBC的頂點O(0,0),A(﹣1,2),點B在x軸正半軸上按以下步驟作圖:①以點O為圓心,適當長度為半徑作弧,分別交邊OA,OB于點D,E;②分別以點D,E為圓心,大于DE的長為半徑作弧,兩弧在∠AOB內(nèi)交于點F;③作射線OF,交邊AC于點G,則點G的坐標為( )
A. (﹣1,2) B. (,2) C. (3﹣,2) D. (﹣2,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲,乙兩種機器人都被用來搬運某體育館室內(nèi)裝潢材料甲型機器人比乙型機器人每小時少搬運30千克,甲型機器人搬運600千克所用的時間與乙型機器人搬運800千克所用的時間相同,兩種機器人每小時分別搬運多少千克?設(shè)甲型機器人每小時搬運x千克,根據(jù)題意,可列方程為( )
A. =B. =
C. =D. =
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com