【題目】如圖,反比例函數(shù)經(jīng)過點,則________;若點為該曲線上的一點,過點作軸、軸的垂線,分別交直線于點、兩點,若直線與軸交于點,與軸相交于點,則的值為________.
【答案】
【解析】
作CE⊥x軸于E,DF⊥y軸于F,由直線的解析式為y=-x+m,易得A(0,m),B(m,0),得到△OAB等腰直角三角形,則△ADF和△CEB都是等腰直角三角形,設M的坐標為(a,b),則ab=,并且CE=b,DF=a,則AD=DF=a,BC=CE=b,于是得到ADBC=2ab=2.
解:∵反比例函數(shù)y=經(jīng)過點(1,),
∴k=1×=,
作CE⊥x軸于E,DF⊥y軸于F,如圖,
對于y=x+m,
令x=0,則y=m;令y=0,x+m=0,解得x=m,
∴A(0,m),B(m,0),
∴△OAB等腰直角三角形,
∴△ADF和△CEB都是等腰直角三角形,
設M的坐標為(a,b),則ab=,CE=b,DF=a,
∴AD=DF=a,BC=CE=b,
∴ADBC=ab=2ab=2.
故答案為:,2
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列式子中①abc<0;②0<b<-2a;③; ④a+b+c<0成立的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點D,且BD=DC,E是BC延長線上一點,且點C在AE的垂直平分線上.有下列結論:
①AB=AC=CE;②AB+BD=DE;③AD=AE;④BD=DC=CE.
其中,正確的結論是( 。
A. 只有 B. 只有
C. 只有 D. 只有
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】大家看過中央電視臺“購物街”節(jié)目嗎?其中有一個游戲環(huán)節(jié)是大轉(zhuǎn)輪比賽,轉(zhuǎn)輪上平均分布著5、10、15、20一直到100共20個數(shù)字.選手依次轉(zhuǎn)動轉(zhuǎn)輪,每個人最多有兩次機會.選手轉(zhuǎn)動的數(shù)字之和最大不超過100者為勝出;若超過100則成績無效,稱為“爆掉”.
(1)某選手第一次轉(zhuǎn)到了數(shù)字5,再轉(zhuǎn)第二次,則他兩次數(shù)字之和為100的可能性有多大?
(2)現(xiàn)在某選手第一次轉(zhuǎn)到了數(shù)字65,若再轉(zhuǎn)第二次了則有可能“爆掉”,請你分析“爆掉”的可能性有多大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,點E、F分別在AB、AD上,∠EFB=2∠AFE=2∠BCE,CD=9,CE=20,則線段AF的長為( ).
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰梯形中,,對角線于點,點在軸上,點、在軸上.
若,,求點的坐標;
若,,求過點的反比例函數(shù)的解析式;
如圖,在上有一點,連接,過作交于,交于,在上取,過作交于,交于,當在上運動時,(不與、重合),的值是否發(fā)生變化?若變化,求出變化范圍;若不變,求出其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖⊙O是△ABC的外接圓,∠ABC=45°,延長BC于D,連接AD,使得AD∥OC,AB交OC于E.
(1)求證:AD與⊙O相切;
(2)若AE=2,CE=2.求⊙O的半徑和AB的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com