【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上的一點(diǎn),且BC=EC,CFBEAB于點(diǎn)F,PEB延長線上一點(diǎn),下列結(jié)論:①BE平分∠CBF;CF平分∠DCB;BC=FB;PF=PC.其中正確的有_____.(填序號)

【答案】①②③④

【解析】分析:分別利用平行線的性質(zhì)結(jié)合線段垂直平分線的性質(zhì)以及等腰三角形的性質(zhì)分別判斷得出答案.

詳解:∵BC=EC,

∴∠CEB=∠CBE,

∵四邊形ABCD是平行四邊形,

∴DC∥AB,

∴∠CEB=∠EBF,

∴∠CBE=∠EBF,

∴①BE平分∠CBF,正確;

∵BC=EC,CF⊥BE,

∴∠ECF=∠BCF,

∴②CF平分∠DCB,正確;

∵DC∥AB,

∴∠DCF=∠CFB,

∵∠ECF=∠BCF,

∴∠CFB=∠BCF,

∴BF=BC,

∴③正確;

∵FB=BC,CF⊥BE,

∴B點(diǎn)一定在FC的垂直平分線上,即PB垂直平分FC,

∴PF=PC,故④正確.

故答案為①②③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用勾股定理可以在數(shù)軸上畫出表示的點(diǎn),請依據(jù)以下思路完成畫圖,并保留畫圖痕跡:

第一步:(計算)嘗試滿足,使其中a,b都為正整數(shù).你取的正整數(shù)a=____,b=________

第二步:(畫長為的線段)以第一步中你所取的正整數(shù)a,b為兩條直角邊長畫Rt△OEF,使O為原點(diǎn),點(diǎn)E落在數(shù)軸的正半軸上, ,則斜邊OF的長即為.

請在下面的數(shù)軸上畫圖:(第二步不要求尺規(guī)作圖,不要求寫畫法)

第三步:(畫表示的點(diǎn))在下面的數(shù)軸上畫出表示的點(diǎn)M,并描述第三步的畫圖步驟:_______________________________________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,EF∥CD,DE∥BC.

(1)求證:AF:FD=AD:DB;

(2)若AB=15,AD:BD=2:1,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知連接A.B兩地之間的公路長為600千米,甲開車從A地出發(fā)沿著此公路以100千米/小時的速度前往B地,乙騎自行車從B地出發(fā)沿此公路勻速前往A.已知乙比甲晚出發(fā)1小時,乙出發(fā)4小時后與甲第一次相遇,當(dāng)甲到達(dá)B地侯立即原路原速返回.若乙第二次與甲相遇時乙共騎行了m千米,則m=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過點(diǎn)A、C、B的拋物線的一部分c1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;

(3)當(dāng)△BDM為直角三角形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級兩個班各選派10名學(xué)生參加垃圾分類知識競賽,各參賽選手的成績?nèi)缦拢?/span>

八(1)班:88,91,92,93,93,93,94,98,98,100;

八(2)班:89,93,93,93,95,96,969898,99

通過整理,得到數(shù)據(jù)分析表如下

班級

最高分

平均分

中位數(shù)

眾數(shù)

方差

八(1)班

100

93

93

12

八(2)班

99

95

8.4

1)求表中,,的值;

2)依據(jù)數(shù)據(jù)分析表,有同學(xué)認(rèn)為最高分在(1)班,(1)班的成績比(2)班好.但也有同學(xué)認(rèn)為(2)班的成績更好.請你寫出兩條支持八(2)班成績更好的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)D,E在⊙O上,∠A=2BDE,點(diǎn)CAB的延長線上,∠C=ABD.

(1)求證:CE是⊙O的切線;

(2)若BF=2,EF=,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=90°,經(jīng)過點(diǎn)C的⊙O與斜邊AB相切于點(diǎn)P.

(1)如圖①,當(dāng)點(diǎn)OAC上時,試說明2ACP=B;

(2)如圖②,AC=8,BC=6,當(dāng)點(diǎn)O在△ABC外部時,求CP長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用棋子擺成的字型圖案如圖所示現(xiàn)察此圖案的規(guī)律,并回答:

1)依照此規(guī)律,第五個圖形中共有 個棋子,第八個圖形中共有 個棋子.

2)第為正整數(shù))個圖形中共有 個棋子.

3)根據(jù)(2)中的結(jié)論,第幾個圖形中有2022個棋子?

查看答案和解析>>

同步練習(xí)冊答案