【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.
(1)利用尺規(guī)作線段AC的垂直平分線DE,垂足為E,交AB于點D;(保留作圖痕跡,不寫作法)
(2)若△ADE的周長為a,先化簡T=(a+1)2﹣a(a﹣1),再求T的值.
【答案】(1)作圖見解析(2)10+.
【解析】分析:(1)垂直平分線的尺規(guī)作圖方法:先以A為圓心,以大于線段AC一半的長度畫弧,然后再以C為圓心,以相同長度為半徑畫弧,兩條圓弧交于兩點,連接該兩點的直線即為線段AC的垂直平分線。(2)先化簡,然后利用三角形的周長求出a,最后代入即可求得T的值。
詳解:(1)如圖所示,DE即為所求;
(2)由題可得,AE=AC=,∠A=30°,
∴Rt△ADE中,DE=AD,
設DE=x,則AD=2x,
∴Rt△ADE中,x2+()2=(2x)2,
解得x=1,
∴△ADE的周長a=1+2+=3+,
∵T=(a+1)2﹣a(a﹣1)=3a+1,
∴當a=3+時,T=3(3+)+1=10+3.
科目:初中數學 來源: 題型:
【題目】實驗室里,水平桌面上有甲、乙、丙三個圓柱形容器(容器足夠高),底面半徑之比為1:2:1,,用兩個相同的管子在容器的5cm高度處連通(即管子底端離容器底5cm),現三個容器中,只有甲中有水,水位高1cm,如圖所示.若每分鐘同時向乙和丙注入相同量的水,開始注水1分鐘,乙的水位上升cm,則開始注入 分鐘的水量后,甲與乙的水位高度之差是0.5cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+4分別與x軸、y軸交于點A,B,雙曲線(k>0,x>0)與直線l不相交,E為雙曲線上一動點,過點E作EG⊥x軸于點G,EF⊥y軸于點F,分別與直線l交于點C,D,且∠COD=45°,則k=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面內給定射線OA,射線OB及∠MON,給出如下定義:若由射線OA、OB組成的∠AOB的平分線OT落在∠MON的內部或邊OM、ON上,則稱射線OA與射線OB關于∠MON內含對稱.例如,圖1中射線OA與射線OB關于∠MON內含對稱
已知:如圖2,在平面內,∠AOM=10°,∠MON=20°
(1)若有兩條射線,的位置如圖3所示,且,,則在這兩條射線中,與射線OA關于∠MON內含對稱的射線是_____________
(2)射線OC是平面上繞點O旋轉的一條動射線,若射線OA與射線OC關于∠MON內含對稱,設∠COM=x°,求x的取值范圍;
(3)如圖4,∠AOE=∠EOH=2∠FOH=20°,現將射線OH繞點O以每秒1°的速度順時針旋轉,同時將射線OE和OF繞點O都以每秒3°的速度順時針旋轉.設旋轉的時間為t秒,且.若∠FOE的內部及兩邊至少存在一條以O為頂點的射線與射線OH關于∠MON內含對稱,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,點D、E分別在BC,AC且BD=CE,AD、BE相交于點M,
求證:(1)△AME∽△BAE;(2)BD2=AD×DM.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某同學模仿二維碼的方式為學校設計了一個身份識別圖案系統(tǒng):在的正方形網格中,黑色正方形表示數字1,白色正方形表示數字0.如圖1是某個學生的身份識別圖案.約定如下:把第i行,第j列表示的數字記為(其中i,j=1,2,3,4),如圖1中第2行第1列的數字=0;對第i行使用公式進行計算,所得結果表示所在年級,表示所在班級,表示學號的十位數字,表示學號的個位數字.如圖1中,第二行,說明這個學生在5班.
(1)圖1代表的學生所在年級是______年級,他的學號是_________;
(2)請仿照圖1,在圖2中畫出八年級4班學號是36的同學的身份識別圖案
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠=90°,==6,點在邊上運動,過點作⊥于點,以、為鄰邊作□,設□與△重疊部分圖形的面積為,線段的長為(0<≤6).
(1)求線段的長(用含的代數式表示)
(2)當點落現在變上時,求的值;
(3)求與之間的函數關系式;
(4)直接寫出點到△任意兩邊所在直線的距離相等時的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校計劃購買若干臺電腦,現從兩家商場了解到同一種型號的電腦報價均為6000元,并且多買都有一定的優(yōu)惠.各商場的優(yōu)惠條件如下表所示:
商場 | 優(yōu)惠條件 |
甲商場 | 第一臺按原價收費,其余的每臺優(yōu)惠25% |
乙商場 | 每臺優(yōu)惠20% |
(1)設學校購買臺電腦,選擇甲商場時,所需費用為元,選擇乙商場時,所需費用為元,請分別求出,與之間的關系式.
(2)什么情況下,兩家商場的收費相同?什么情況下,到甲商場購買更優(yōu)惠?什么情況下,到乙商場購買更優(yōu)惠?
(3)現在因為急需,計劃從甲乙兩商場一共買入10臺電腦,已知甲商場的運費為每臺50元,乙商場的運費為每臺60元,設總運費為元,從甲商場購買臺電腦,在甲商場的庫存只有4臺的情況下,怎樣購買,總運費最少?最少運費是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(6,6)、(6,0).拋物線的頂點P在折線OAAB上運動.
(1)當點P在線段OA上運動時,拋物線與y軸交點坐標為(0,c).
①用含m的代數式表示n;
②求c的取值范圍;
(2)當拋物線經過點B時,求拋物線所對應的函數表達式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com