【題目】在日常生活中我們經(jīng)常會使用到訂書機,如圖MN是裝訂機的底座,AB是裝訂機的托板,始終與底座平行,連接桿DE的D點固定,點E從A向B處滑動,壓柄BC可繞著轉(zhuǎn)軸B旋轉(zhuǎn).已知壓柄BC的長度為15cm,BD=5cm,壓柄與托板的長度相等.
(1)當托板與壓柄夾角∠ABC=37°時,如圖①點E從A點滑動了2cm,求連接桿DE的長度;
(2)當壓柄BC從(1)中的位置旋轉(zhuǎn)到與底座AB的夾角∠ABC=127°,如圖②.求這個過程中點E滑動的距離.(答案保留根號)(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8.tan37°≈0.75)
【答案】(1)連接桿DE的長度為3cm(2)這個過程中點E滑動的距離為(16﹣)cm
【解析】
(1)作DH⊥BE于H,在Rt△BDH中用三角函數(shù)算出DH和BH,再求出EH,在三角形DEH中用勾股定理即可求得DE;(2)作DH⊥AB的延長線于點H,在Rt△DBH和Rt△DEH中,用三角函數(shù)分別求出BH,DH,EB的長,從而可求得 點E滑動的距離.
(1)如圖①,作DH⊥BE于H,
在Rt△BDH中,∠DHB=90°,BD=5,∠ABC=37°,
∴= sin37°,=cos37°,
∴DH=5sin37°≈5×0.6=3(cm),BH=5cos37°=5×0.8=4(cm).
∵AB=BC=15cm,AE=2cm,
∴EH=AB﹣AE﹣BH=15﹣2﹣4=9(cm),
∴DE=
答:連接桿DE的長度為 cm.
(2)如圖②,作DH⊥AB的延長線于點H,
∵∠ABC=127°,
∴∠DBH=53°,∠BDH=37°,
在Rt△DBH中,=sin37°=0.6,
∴BH=3cm,
∴DH=4cm,
在Rt△DEH中,EH2+DH2=DE2,
∴(EB+3)2+16=90,
∴EB=()(cm),
∴點E滑動的距離為:15﹣()﹣2=(16﹣)(cm).
答:這個過程中點E滑動的距離為(16﹣)cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將平行四邊形ABCD紙片沿EF折疊,使點C與點A重合,點D落在點G處.
(1)連接CF,求證:四邊形AECF是菱形;
(2)若E為BC中點,BC=26,tan∠B=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y=(x>0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.設(shè)直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請結(jié)合圖象直接寫出不等式k2x+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從下列4個函數(shù):①y=3x﹣2;②y=(x<0);③y=(x>0);④y=﹣x2(x<0)中任取一個,函數(shù)值y隨自變量x的增大而增大的概率是( )
A. B. C. D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為8元/千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數(shù)關(guān)系如圖所示.
(1)求與的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?
(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是2018年三月份某居民小區(qū)隨機抽取20戶居民的用水情況::
月用水量/噸 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
戶數(shù) | 2 | 4 | m | 4 | 3 | 0 | 1 |
(1)求出m= ,補充畫出這20戶家庭三月份用電量的條形統(tǒng)計圖;
(2)據(jù)上表中有關(guān)信息,計算或找出下表中的統(tǒng)計量,并將結(jié)果填入表中:
統(tǒng)計量名稱 | 眾數(shù) | 中位數(shù) | 平均數(shù) |
數(shù)據(jù) |
|
|
|
(3)為了倡導“節(jié)約用水綠色環(huán)!钡囊庾R,江贛市自來水公司實行“梯級用水、分類計費”,價格表如下:
月用水梯級標準 | Ⅰ級(30噸以內(nèi)) | Ⅱ級(超過30噸的部分) |
單價(元/噸) | 2.4 | 4 |
如果該小區(qū)有500戶家庭,根據(jù)以上數(shù)據(jù),請估算該小區(qū)三月份有多少戶家庭在Ⅰ級標準?
(4)按上表收費,如果某用戶本月交水費120元,請問該用戶本月用水多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙P的圓心是(2,a),半徑為2,直線y=﹣x與⊙P相交于A、B兩點,若弦AB的長為2,則a的值是( 。
A. ﹣2B. ﹣2+C. ﹣2﹣D. ﹣2﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動點P從A點出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(0,1),B(4,2),C(2,0).
(1)將△ABC沿y軸翻折得到△A1B1C1,畫出△A1B1C1;
(2)將△ABC繞著點(﹣1,﹣1)旋轉(zhuǎn)180°得到△A2B2C2,畫出△A2B2C2;
(3)線段B2C2可以看成是線段B1C1繞著平面直角坐標系中某一點逆時針旋轉(zhuǎn)得到,直接寫出旋轉(zhuǎn)中心的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com