8.如圖,在Rt△ABC中,∠C=90°,O為AB邊上一點(diǎn),⊙O交AB于E,F(xiàn)兩點(diǎn),BC切⊙O于點(diǎn)D,且CD=$\frac{1}{2}$EF=1.
(1)求證:⊙O與AC相切;
(2)求圖中陰影部分的面積.

分析 (1)連接OD,過點(diǎn)O作OH⊥AC于點(diǎn)H,先根據(jù)題意得出四邊形OHCD是矩形,進(jìn)而可得出結(jié)論;
(2)直接根據(jù)S陰影=S正方形ODCH-S扇形ODH即可得出結(jié)論.

解答 (1)證明:連接OD,過點(diǎn)O作OH⊥AC于點(diǎn)H,
∵BC是⊙O的切線,
∴OD⊥BC.
∵∠C=90°,
∴∠OHC=∠ODC=∠C=90°,
∴四邊形OHCD是矩形.
∵CD=$\frac{1}{2}$EF,
∴OH=$\frac{1}{2}$EF=OE.
∵OH⊥AC,
∴AC是⊙O的切線;

(2)解:∵OD=$\frac{1}{2}$EF=1,CD=1,∠DOH=90°,
∴S陰影=1×1-$\frac{90π×{1}^{2}}{360}$=1-$\frac{1}{4}$π.

點(diǎn)評(píng) 本題考查的是切線的判定與性質(zhì),熟知切線的判定定理是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,AC是平行四邊形ABCD的一條對(duì)角線,過點(diǎn)B作BM⊥AC于點(diǎn)M,多點(diǎn)D作DN⊥AC于點(diǎn)N,分別連接BN與DM,求證:BN=DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.計(jì)算:(π-$\sqrt{2}}$)0+$\sqrt{18}$-4sin45°-($\frac{1}{2}$)-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.二次函數(shù)y=ax2+bx+c的部分對(duì)應(yīng)值如下表:
x-3-20135
y-54-36-12-6-6-22
當(dāng)x=-1時(shí),對(duì)應(yīng)的函數(shù)值y=-22.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,AB=AC,∠BAC=α,點(diǎn)P是△ABC內(nèi)一點(diǎn),且∠PAC+∠PCA=$\frac{α}{2}$,連接PB,試探究PA、PB、PC滿足的等量關(guān)系.
(1)當(dāng)α=60°時(shí),將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為150度,進(jìn)而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關(guān)系為PA2+PC2=PB2;
(2)如圖2,當(dāng)α=120°時(shí),參考(1)中的方法,探究PA、PB、PC滿足的等量關(guān)系,并給出證明;
(3)PA、PB、PC滿足的等量關(guān)系為4PA2•sin2$\frac{α}{2}$+PC2=PB2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)A(-1,6),B(3,-2).
(1)求一次函數(shù)的解析式;
(2)當(dāng)y>0時(shí),求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,拋物線y=a(x-1)2+k與x軸交于A、C兩點(diǎn),與y軸交于點(diǎn)B,點(diǎn)A、B的坐標(biāo)分別為(-1,0)和(0,3).
(1)求拋物線的解析式;
(2)點(diǎn)M是直線BC上一動(dòng)點(diǎn),過點(diǎn)M作y軸的平行線,與拋物線交于點(diǎn)D.
①若直線DM經(jīng)過線段BC的中點(diǎn),求點(diǎn)D的坐標(biāo);
②是否存在點(diǎn)M,使得以M、D、O、B為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.(1)計(jì)算:(3-$\sqrt{7}$)(3+$\sqrt{7}$)+$\sqrt{2}$(2-$\sqrt{2}$)
(2)解方程:$\frac{x-3}{x-2}$+1=$\frac{3}{2-x}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,水庫大壩的橫斷面是梯形,壩頂寬是8m,壩高為30m.斜坡AD的坡度為i=$\sqrt{3}$:3,斜坡CB的坡度為i=2:3.求斜坡AD的坡角α,壩度寬AB和斜坡AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案