分析 (1)連接OD,過點(diǎn)O作OH⊥AC于點(diǎn)H,先根據(jù)題意得出四邊形OHCD是矩形,進(jìn)而可得出結(jié)論;
(2)直接根據(jù)S陰影=S正方形ODCH-S扇形ODH即可得出結(jié)論.
解答 (1)證明:連接OD,過點(diǎn)O作OH⊥AC于點(diǎn)H,
∵BC是⊙O的切線,
∴OD⊥BC.
∵∠C=90°,
∴∠OHC=∠ODC=∠C=90°,
∴四邊形OHCD是矩形.
∵CD=$\frac{1}{2}$EF,
∴OH=$\frac{1}{2}$EF=OE.
∵OH⊥AC,
∴AC是⊙O的切線;
(2)解:∵OD=$\frac{1}{2}$EF=1,CD=1,∠DOH=90°,
∴S陰影=1×1-$\frac{90π×{1}^{2}}{360}$=1-$\frac{1}{4}$π.
點(diǎn)評(píng) 本題考查的是切線的判定與性質(zhì),熟知切線的判定定理是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
x | … | -3 | -2 | 0 | 1 | 3 | 5 | … |
y | … | -54 | -36 | -12 | -6 | -6 | -22 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com