【題目】如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于(
A.30°
B.40°
C.50°
D.60°

【答案】C
【解析】解:∵DC∥AB, ∴∠DCA=∠CAB=65°,
∵△ABC繞點A旋轉(zhuǎn)到△AED的位置,
∴∠BAE=∠CAD,AC=AD,
∴∠ADC=∠DCA=65°,
∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,
∴∠BAE=50°.
故選:C.
先根據(jù)平行線的性質(zhì)得∠DCA=∠CAB=65°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BAE=∠CAD,AC=AD,則根據(jù)等腰三角形的性質(zhì)得∠ADC=∠DCA=65°,然后根據(jù)三角形內(nèi)角和定理計算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝50件,每件售價300元,若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買1件,所買的每件服裝的售價均降低2元.已知該服裝成本是每件200元,設(shè)顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫圓O,使圓O過A、D兩點,且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
(2)求證:BC與圓O相切;
(3)設(shè)圓O交AB于點E,若AE=2,CD=2BD.求線段BE的長和弧DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAB的一邊OB在x軸的正半軸上,點A的坐標(biāo)為(6,8),OA=OB,點P在線段OB上,點Q在y軸的正半軸上,OP=2OQ,過點Q作x軸的平行線分別交OA,AB于點E,F(xiàn).

(1)求直線AB的解析式;
(2)若四邊形POEF是平行四邊形,求點P的坐標(biāo);
(3)是否存在點P,使△PEF為直角三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l:y=kx+b(k≠0)的圖象與x軸、y軸交于A、B兩點,A(﹣2,0),B(0,1).

(1)求直線l的函數(shù)表達(dá)式;

(2)若P是x軸上的一個動點,請直接寫出當(dāng)PAB是等腰三角形時P的坐標(biāo);

(3)在y軸上有點C(0,3),點D在直線l上,若ACD面積等于4,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),E是正方形ABCD的邊BC上的一個點(E與B、C兩點不重合),過點E作射線EP⊥AE,在射線EP上截取線段EF,使得EF=AE;過點F作FG⊥BC交BC的延長線于點G.

(1)求證:FG=BE;
(2)連接CF,如圖(2),求證:CF平分∠DCG;
(3)當(dāng) = 時,求sin∠CFE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列幾何體中,同一個幾何體的主視圖與俯視圖不同的是(
A.圓柱
B.正方體
C.圓錐
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有2條生產(chǎn)線計劃在一個月(30天)內(nèi)組裝520臺產(chǎn)品(每天產(chǎn)品的產(chǎn)量相同),按原先的組裝速度,不能完成任務(wù);若加班生產(chǎn),每條生產(chǎn)線每天多組裝2臺產(chǎn)品,能提前完成任務(wù).
(1)每條生產(chǎn)線原先每天最多能組裝多少臺產(chǎn)品?
(2)要按計劃完成任務(wù),策略一:增添1條生產(chǎn)線,共要多投資19000元;策略二:按每天能組裝最多臺數(shù)加班生產(chǎn),每條生產(chǎn)線每天共要多花費350元;選哪一個策略較省費用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算: +|﹣4|+(﹣1)0﹣( 1

查看答案和解析>>

同步練習(xí)冊答案