【題目】如圖,直線y=x+m與雙曲線y=相交于A,B兩點,BC∥x軸,AC∥y軸,則△ABC面積的最小值為_____.
【答案】6
【解析】
根據(jù)雙曲線y=過A,B兩點,可設(shè)A(a,),B(b,),則C(a,).將y=x+m代入y=,整理得x2+mx-3=0,由于直線y=x+m與雙曲線y=相交于A,B兩點,所以a、b是方程x2+mx-3=0的兩個根,根據(jù)根與系數(shù)的關(guān)系得出a+b=-m,ab=-3,那么(a-b)2=(a+b)2-4ab=m2+12.再根據(jù)三角形的面積公式得出S△ABC=ACBC=m2+6,利用二次函數(shù)的性質(zhì)即可求出當(dāng)m=0時,△ABC的面積有最小值6.
設(shè)A(a,),B(b,),則C(a,).
將y=x+m代入y=,得x+m=,
整理,得x2+mx-3=0,
則a+b=-m,ab=-3,
∴(a-b)2=(a+b)2-4ab=m2+12.
∵S△ABC=ACBC
=(-)(a-b)
=(a-b)
=(a-b)2
=(m2+12)
=m2+6,
∴當(dāng)m=0時,△ABC的面積有最小6.
故答案為6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,AE=CD,AD與BE相交于點P,BQ⊥AD于Q,PQ=3,PE=1.
(1)求證:BE=AD;
(2)求∠BPD的度數(shù);
(3)求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.
(1)求A,B兩點的坐標(biāo);
(2)過B點作直線BP與x軸相交于P,且使OP=2OA, 求ΔABP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,BF、CF是角平分線,DE∥BC,分別交AB、AC于點D、E,DE經(jīng)過點F.結(jié)論:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周長=AB+AC;④BF=CF.其中正確的是______.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD中,E是AD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.
(1)求證:△BGF≌△FHC;
(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,已知木欄總長為100米.
(1)已知a=20,矩形菜園的一邊靠墻,另三邊一共用了100米木欄,且圍成的矩形菜園面積為450平方米.如圖1,求所利用舊墻AD的長;
(2)已知0<α<50,且空地足夠大,如圖2.請你合理利用舊墻及所給木欄設(shè)計一個方案,使得所圍成的矩形菜園ABCD的面積最大,并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 一定是一次函數(shù)
B. 有的實數(shù)在數(shù)軸上找不到對應(yīng)的點
C. 長為的三條線段能組成直角三角形
D. 無論為何值,點總是在第二象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:線段AB,BC,.
求作:矩形ABCD.
老師說甲、乙同學(xué)的作圖都正確. 請你選擇其中一位同學(xué)的作業(yè)說明其作圖依據(jù).
我選擇____同學(xué),他的作圖依據(jù)是:___________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,延長至點,過點作的切線,切點為,過點向的延長線作垂線交該延長線于點,交于點,已知,.
求的長;
連結(jié),延長交于,連結(jié).
①求的長;
②求證:是的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com