【題目】如圖,△ABC為等邊三角形,AECD,ADBE相交于點P,BQADQPQ3,PE1

1)求證:BEAD;

2)求∠BPD的度數(shù);

3)求AD的長.

【答案】1)詳見解析;(260°;(37

【解析】

1)根據(jù)SAS證明△ABE與△CAD全等即可;

2)根據(jù)全等三角形的性質(zhì)得出∠ABE=∠CAD,進而解答即可;

3)根據(jù)含30°的直角三角形的性質(zhì)解答即可.

1)證明:∵△ABC為等邊三角形,

ABAC,∠BAC=∠C60°,

又∵AECD,

在△ABE與△CAD中, ,

∴△ABE≌△CADSAS),

BEAD;

2)解:由(1)得∠ABE=∠CAD ADBE,

∴∠BPQ=∠BAD+ABE

=∠BAD+CAD

60°;

3)解:∵BQAD,∠BPQ60°,

∴∠PBQ30°,

BP2PQ6

又∵ADBE,

ADBEBP+PE6+17

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點A(1,0),B(3,1),C(3,3),反比例函數(shù)y=(x>0)的圖象經(jīng)過點D.

(1)求點D的坐標(biāo)及反比例函數(shù)的解析式;

(2)經(jīng)過點C的一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于P點,當(dāng)k>0時,確定點P橫坐標(biāo)的取值范圍(不必寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與x軸的交點坐標(biāo)分別為A(1,0),B(x2,0)(點B在點A的右側(cè)),其對稱軸是x=3,該函數(shù)有最小值是﹣2.

(1)求二次函數(shù)解析式;

(2)在圖1上作平行于x軸的直線,交拋物線于C(x3,y3),D(x4,y4),求x3+x4的值;

(3)將(1)中函數(shù)的部分圖象(x>x2)向下翻折與原圖象未翻折的部分組成圖象“G”,如圖2,在(2)中平行于x軸的直線取點E(x5,y5)、(x4<x5),結(jié)合函數(shù)圖象求x3+x4+x5的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題發(fā)現(xiàn)】

(1)如圖(1),四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為__________;

【拓展探究】

(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;

【解決問題】

(3)如圖(3),在正方形ABCD中,AB=2,以點A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請直接寫出BD'平方的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C為線段AE上一動點(不與點A,點E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDEADBE交于點O,ADBC交于點P,BECD交于點Q,連接PQ,以下四個結(jié)論,ADBE;CPCQ;OBDEPQAE,一定成立的結(jié)論有_____(請把正確結(jié)論的序號填在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年,第十五號臺風(fēng)登陸江蘇,A市接到臺風(fēng)警報時,臺風(fēng)中心位于A市正南方向104kmB處,正以16km/h的速度沿BC方向移動.

1)已知A市到BC的距離AD40km,那么臺風(fēng)中心從B點移到D點經(jīng)過多長時間?

2)如果在距臺風(fēng)中心50km的圓形區(qū)域內(nèi)都將受到臺風(fēng)影響,那么A市受到臺風(fēng)影響的時間是多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若實數(shù)x,y滿足(x)(y)=2016

1)求xy之間的數(shù)量關(guān)系;

2)求3x22y2+3x3y2017的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDABH,點G是⊙O上一點,AGCD于點K,延長KD至點E,使KE=GE,分別延長EG、AB相交于點F.

(1)求證:EF是⊙O的切線;

(2)若ACEF,試探究KG、KD、GE之間的關(guān)系,并說明理由;

(3)在(2)的條件下,若sinE=,AK=2,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+m與雙曲線y=相交于A,B兩點,BCx軸,ACy軸,則△ABC面積的最小值為_____

查看答案和解析>>

同步練習(xí)冊答案