【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,分別延長OA,OC到點E,F,使AE=CF,依次連接B,F,D,E各點.
(1)求證:△BAE≌△BCF;
(2)若∠ABC=40°,則當(dāng)∠EBA= 時,四邊形BFDE是正方形.
【答案】(1)證明見解析;(2)25.
【解析】分析:(1)由菱形的性質(zhì)得出AB=CB,由等腰三角形的性質(zhì)得出∠BAC=∠BCA,證出∠BAE=∠BCF,由SAS證明△BAE≌△BCF即可;(2)由菱形的性質(zhì)得出AC⊥BD,OA=OC,OB=OD,∠ABO=∠ABC=20°,證出OE=OF,得出四邊形BFDE是菱形,證明△OBE是等腰直角三角形,得出OB=OE,BD=EF,證出四邊形BFDE是矩形,即可得出結(jié)論.
本題解析:
(1)證明:∵四邊形ABCD是菱形,
∴AB=CB,
∴∠BAC=∠BCA,
∴180°﹣∠BAC=180°﹣∠BCA,
即∠BAE=∠BCF,
在△BAE和△BCF中, ,
∴△BAE≌△BCF(SAS);
(2)解:若∠ABC=40°,則當(dāng)∠EBA=25°時,四邊形BFDE是正方形.理由如下:
∵四邊形ABCD是菱形,
∴AC⊥BD,OA=OC,OB=OD,∠ABO=∠ABC=20°,
∵AE=CF,
∴OE=OF,
∴四邊形BFDE是平行四邊形,
又∵AC⊥BD,∴四邊形BFDE是菱形,
∵∠EBA=25°,
∴∠OBE=25°+20°=45°,
∴△OBE是等腰直角三角形,
∴OB=OE,
∴BD=EF,
∴四邊形BFDE是矩形,
∴四邊形BFDE是正方形;
故答案為:25.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B處與燈塔P之間的距離為( )
A.60海里
B.45海里
C.20 海里
D.30 海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)同時從山腳開始爬山,到達(dá)山頂后立即下山,在山腳和山頂之間不斷往返運動,已知山坡長為360m,甲、乙上山的速度比是6:4,并且甲、乙下山的速度都是各自上山速度的1.5倍,當(dāng)甲第三次到達(dá)山頂時,則此時乙所在的位置是。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠ABD和∠BDC的平分線相交于點E,BE交CD于點F, ∠1+∠2=90°.
(1)AB與CD平行嗎?試說明理由.
(2)試探究∠2與∠3的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時,矩形AEBD是正方形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分9分)如圖,四邊形ABCD中AB∥CD,AB≠CD,BD=AC。
(1)求證:AD=BC;
(2)若E,F,G,H分別是AB,CD,AC,BD的中點,求證:線段EF與線段GH互相垂直平分。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長均為1個單位的正方形網(wǎng)格圖中,建立了平面直角坐標(biāo)系xOy,按要求解答下列問題:
(1)寫出△ABC三個頂點的坐標(biāo);
(2)畫出△ABC向右平移6個單位后得到的圖形△A1B1C1;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決中小學(xué)大班額問題,東營市各縣區(qū)今年將改擴建部分中小學(xué),某縣計劃對A、B兩類學(xué)校進(jìn)行改擴建,根據(jù)預(yù)算,改擴建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.
(1)改擴建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?
(2)該縣計劃改擴建A、B兩類學(xué)校共10所,改擴建資金由國家財政和地方財政共同承擔(dān).若國家財政撥付資金不超過11800萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到A、B兩類學(xué)校的改擴建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴建方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com