【題目】已知在關(guān)于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均為實(shí)數(shù),方程①的根為非負(fù)數(shù).
(1)求k的取值范圍;
(2)當(dāng)方程②有兩個(gè)整數(shù)根x1、x2 , k為整數(shù),且k=m+2,n=1時(shí),求方程②的整數(shù)根;
(3)當(dāng)方程②有兩個(gè)實(shí)數(shù)根x1、x2 , 滿足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k為負(fù)整數(shù)時(shí),試判斷|m|≤2是否成立?請說明理由.

【答案】
(1)

解:∵關(guān)于x的分式方程 的根為非負(fù)數(shù),

∴x≥0且x≠1,

又∵x= ≥0,且 ≠1,

∴解得k≥﹣1且k≠1,

又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,

∴k≠2,

綜上可得:k≥﹣1且k≠1且k≠2;


(2)

解:∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有兩個(gè)整數(shù)根x1、x2,且k=m+2,n=1時(shí),

∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,

∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,

∴△=9m2﹣4m(m﹣1)=m(5m+4),

∵x1、x2是整數(shù),k、m都是整數(shù),

∵x1+x2=3,x1x2= =1﹣

∴1﹣ 為整數(shù),

∴m=1或﹣1,

∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,

x2﹣3x=0,

x(x﹣3)=0,

x1=0,x2=3;

把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,

x2﹣3x+2=0,

(x﹣1)(x﹣2)=0,

x1=1,x2=2;


(3)

解:|m|≤2不成立,理由是:

由(1)知:k≥﹣1且k≠1且k≠2,

∵k是負(fù)整數(shù),

∴k=﹣1,

(2﹣k)x2+3mx+(3﹣k)n=0且方程有兩個(gè)實(shí)數(shù)根x1、x2,

∴x1+x2=﹣ = =﹣m,x1x2= = ,

x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),

x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2

x12+x22═x1x2+k2,

(x1+x22﹣2x1x2﹣x1x2=k2

(x1+x22﹣3x1x2=k2,

(﹣m)2﹣3× =(﹣1)2

m2﹣4=1,

m2=5,

m=±

∴|m|≤2不成立.


【解析】(1)先解出分式方程①的解,根據(jù)分式的意義和方程①的根為非負(fù)數(shù)得出k的取值;(2)先把k=m+2,n=1代入方程②化簡,由方程②有兩個(gè)整數(shù)實(shí)根得△是完全平方數(shù),列等式得出關(guān)于m的等式,由根與系數(shù)的關(guān)系和兩個(gè)整數(shù)根x1、x2得出m=1和﹣1,分別代入方程后解出即可.(3)根據(jù)(1)中k的取值和k為負(fù)整數(shù)得出k=﹣1,化簡已知所給的等式,并將兩根和與積代入計(jì)算求出m的值,做出判斷.本題考查了一元二次方程的根與系數(shù)的關(guān)系,考查了根的判別式及分式方程的解;注意:①解分式方程時(shí)分母不能為0;②一元二次方程有兩個(gè)整數(shù)根時(shí),根的判別式△為完全平方數(shù).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用求根公式和根與系數(shù)的關(guān)系的相關(guān)知識(shí)可以得到問題的答案,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是邊長為4cm的等邊ABCAB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cms。

⑴連接AQ、CP交于點(diǎn)M,在點(diǎn)PQ運(yùn)動(dòng)的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請直接寫出它的度數(shù);

⑵點(diǎn)P、Q在運(yùn)動(dòng)過程中,設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),PBQ為直角三角形?

⑶如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQCP交點(diǎn)為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請求出它的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系xoy中,直線l:y=kx+b交x軸,y軸于點(diǎn)E,F(xiàn),點(diǎn)B的坐標(biāo)是(2,2),過點(diǎn)B分別作x軸、y軸的垂線,垂足為A、C,點(diǎn)D是線段CO上的動(dòng)點(diǎn),以BD為對(duì)稱軸,作與△BCD或軸對(duì)稱的△BC′D.

(1)當(dāng)∠CBD=15°時(shí),求點(diǎn)C′的坐標(biāo).
(2)當(dāng)圖1中的直線l經(jīng)過點(diǎn)A,且k=﹣ 時(shí)(如圖2),求點(diǎn)D由C到O的運(yùn)動(dòng)過程中,線段BC′掃過的圖形與△OAF重疊部分的面積.
(3)當(dāng)圖1中的直線l經(jīng)過點(diǎn)D,C′時(shí)(如圖3),以DE為對(duì)稱軸,作于△DOE或軸對(duì)稱的△DO′E,連結(jié)O′C,O′O,問是否存在點(diǎn)D,使得△DO′E與△CO′O相似?若存在,求出k、b的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:全等三角形對(duì)應(yīng)邊上的中線相等(請根據(jù)圖形,寫出已知、求證、證明)

已知:

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AB的垂直平分線EF分別交AC、AB邊于E、F點(diǎn).若點(diǎn)OBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則BOM周長的最小值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)依次為A﹣1,2),B﹣4,1),C﹣2,﹣2

1)請寫出△ABC關(guān)于x軸對(duì)稱的點(diǎn)A1B1、C1的坐標(biāo);

2)請?jiān)谶@個(gè)坐標(biāo)系中作出△ABC關(guān)于y軸對(duì)稱的△A2B2C2;

3)計(jì)算:△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,是假命題的是( )

A. 在△ABC中,若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形

B. 在△ABC中,若a2=(b+c) (b-c),則△ABC是直角三角形

C. 在△ABC中,若∠B=∠C=∠A,則△ABC是直角三角形

D. 在△ABC中,若a:b:c=5:4:3,則△ABC是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如右圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE、ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連結(jié)PQ.以下五個(gè)結(jié)論:①AD=BE;②PQAE;③AP=BQ;④DE=DP;⑤∠AOB=60°. 恒成立的結(jié)論有( )

A. ①③④⑤ B. ①②④⑤

C. ①②③⑤ D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案