【題目】如圖1,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s。
⑴連接AQ、CP交于點M,在點P、Q運動的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請直接寫出它的度數(shù);
⑵點P、Q在運動過程中,設運動時間為t,當t為何值時,△PBQ為直角三角形?
⑶如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請求出它的度數(shù)。
【答案】見解析
【解析】試題分析:(1)因為點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,所以AP=BQ.AB=AC,∠B=∠CAP=60°,因而運用邊角邊定理可知△ABQ≌△CAP.再用全等三角形的性質(zhì)定理及三角形的角間關系、三角形的外角定理,可求得CQM的度數(shù);
(2)設時間為t,則AP=BQ=t,PB=4-t.分別就①當∠PQB=90°時;②當∠BPQ=90°時利用直角三角形的性質(zhì)定理求得t的值;
(3)首先利用邊角邊定理證得△PBC≌△QCA,再利用全等三角形的性質(zhì)定理得到∠BPC=∠MQC.再運用三角形角間的關系求得∠CMQ的度數(shù).
試題解析:(1)∠CMQ不變.
AC="BA," ∠A=∠B, AP="BQ,"
∴△ACP≌△BAQ, ∴∠ACP=∠BAQ,
∴∠CMQ=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC=60°.
∴∠CMQ恒等于60°,不發(fā)生變化.
(2)設運動了t秒
當△PBQ為Rt三角形時 ∠B="60°"
①當∠BPQ=30°時 ∴PB="AB-BP=4-t=2BQ=2t" 解得t=
②當∠PQB=30°時 則BQ=t=2PB=2(AB-AP)=2(4-t) 解得t=
(3)∠CMQ不變.
∵AC=CB,∠ACQ=120°=∠CBP, CQ="BP,"
∴△ACQ≌△CBP, ∴∠CAQ=∠BCP,
∴∠CMQ=∠CAQ+∠ACM=∠BCP+∠ACM=∠MCQ+∠ACM=∠ACQ=120°.
∴∠CMQ恒等于120°,不會發(fā)生變化.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,D、E分別為△ABC的邊AB、AC上點,BE與CD相交于點O.現(xiàn)有四個條件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.
(1)請你選出兩個條件作為題設,余下作結論,寫一個正確的命題:命題的條件是_______和_______,命題的結論是_______和________(均填序號)
(2)證明你寫的命題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“城市發(fā)展 交通先行”,成都市今年在中心城區(qū)啟動了緩堵保暢的二環(huán)路高架橋快速通道建設工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時)是車流密度x(單位:輛/千米)的函數(shù),且當0<x≤28時,V=80;當28<x≤188時,V是x的一次函數(shù).函數(shù)關系如圖所示.
(1)求當28<x≤188時,V關于x的函數(shù)表達式;
(2)若車流速度V不低于50千米/時,求當車流密度x為多少時,車流量P(單位:輛/時)達到最大,并求出這一最大值.
(注:車流量是單位時間內(nèi)通過觀測點的車輛數(shù),計算公式為:車流量=車流速度×車流密度)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 所有的等腰三角形都是銳角三角形
B. 等邊三角形屬于等腰三角形
C. 不存在既是鈍角三角形又是等腰三角形的三角形
D. 一個三角形里有兩個銳角,則一定是銳角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=﹣2x2的圖象如何移動,就得到y(tǒng)=﹣2x2+4x+1的圖象( )
A.向左移動1個單位,向上移動3個單位
B.向左移動1個單位,向下移動3個單位
C.向右移動1個單位,向上移動3個單位
D.向右移動1個單位,向下移動3個單位
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件是隨機事件的是( )
A. 明天太陽從東方升起
B. 任意畫一個三角形,其內(nèi)角和是360°
C. 通常溫度降到0℃以下,純凈的水結冰
D. 射擊運動員射擊一次,命中靶心
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中是真命題的是( )
A.同位角相等
B.有兩邊及一角分別相等的兩個三角形全等
C.兩組對邊分別相等的四邊形是平行四邊形
D.垂直于半徑的直線是圓的切線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com