兩個以點O為圓心的同心圓中,大圓的弦AB與小圓相切,如果AB的長為24,大圓的半徑OA為13,那么小圓的半徑為________.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在直角坐標系中,A(0,4),B(4
3
,0).點C從點B出發(fā)沿BA方向以每秒2個單位的速度向點A勻速運動,同時點D從點A出發(fā)沿AO方向以每秒1個單位的速度向點O勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點C、D運動的時間是t秒(t>0).過點C作CE⊥BO于點E,連接CD、DE.
(1)當t為何值時,線段CD的長為4;
(2)當線段DE與以點O為圓心,半徑為
3
2
的⊙O有兩個公共交點時,求t的取值范圍;
(3)當t為何值時,以C為圓心、CB為半徑的⊙C與(2)中的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們學習了“弧、弦、圓心角的關系”,實際上我們還可以得到“圓心角、弧、弦、弦心距之間的關系”如下:圓心角、弧、弦、弦心距之間的關系:在同圓或等圓中,如果兩個圓心角i兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們對應的其余各組量也相等.(弦心距指從圓心到弦的距離(如圖(1)中的OC、OC′),弦心距也可以說成圓心到弦的垂線段的長度.)
請直接運用圓心角、弧、弦、弦心距之間的關系解答下列問題.
如圖(2),O是∠EPF的平分線上一點,以點O為圓心的圓與角的兩邊分別交子點A、B、C、D.
(1)求證:AB=CD;
(2)若角的頂點P在圓上或圓內,上述結論還成立嗎?若不成立,請說明理由;若成立,請加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,∠B=90°,B(0,0),A(0,4),C(4
3
,0).點D從點C出發(fā)沿CA方向以每秒2個單位的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連接DE、EF.
(1)當t為何值時,線段DE長為
39
;
(2)當線段EF與以點B為圓心,半徑為1的⊙B有兩個公共交點時,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我們學習了“弧、弦、圓心角的關系”,實際上我們還可以得到“圓心角、弧、弦、弦心距之間的關系”如下:圓心角、弧、弦、弦心距之間的關系:在同圓或等圓中,如果兩個圓心角i兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們對應的其余各組量也相等.(弦心距指從圓心到弦的距離(如圖(1)中的OC、OC′),弦心距也可以說成圓心到弦的垂線段的長度.)
請直接運用圓心角、弧、弦、弦心距之間的關系解答下列問題.
如圖(2),O是∠EPF的平分線上一點,以點O為圓心的圓與角的兩邊分別交子點A、B、C、D.
(1)求證:AB=CD;
(2)若角的頂點P在圓上或圓內,上述結論還成立嗎?若不成立,請說明理由;若成立,請加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們學習了“弧、弦、圓心角的關系”,實際上我們還可以得到“圓心角、弧、弦、弦心距之間的關系”如下:圓心角、弧、弦、弦心距之間的關系:在同圓或等圓中,如果兩個圓心角i兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們對應的其余各組量也相等.(弦心距指從圓心到弦的距離(如圖(1)中的OC、OC′),弦心距也可以說成圓心到弦的垂線段的長度.)
請直接運用圓心角、弧、弦、弦心距之間的關系解答下列問題.
如圖(2),O是∠EPF的平分線上一點,以點O為圓心的圓與角的兩邊分別交子點A、B、C、D.
(1)求證:AB=CD;
(2)若角的頂點P在圓上或圓內,上述結論還成立嗎?若不成立,請說明理由;若成立,請加以證明.

精英家教網

查看答案和解析>>

同步練習冊答案