【題目】如圖(1),在四邊形ABCD中,已知∠ABCADC180°,ABAD,ABAD,點(diǎn)ECD的延長線上,∠12

1)求證:∠3E;

2)求證:CA平分∠BCD;

3)如圖(2),設(shè)AFABC的邊BC上的高,求證:CE2AF

【答案】1)證明見解析;(2)證明見解析;(3)證明見解析.

【解析】分析:(1)根據(jù)三角形的判定定理ASA即可證得.(2)通過三角形全等求得AC=AE,∠BCA=∠E,進(jìn)而根據(jù)等邊對等角求得∠ACD=∠E,從而求得∠BCA=∠E=∠ACD即可證得.(3)過點(diǎn)AAM⊥CE,垂足為M,根據(jù)角的平分線的性質(zhì)求得AF=AM,然后證得△CAE和△ACM是等腰直角三角形,進(jìn)而證得EC=2AF.

本題解析:

1,

ABCADE

ABC≌△ADE

2)由(1ABC≌△ADE 可得

AC=AE

AC平分∠BCD

3)過點(diǎn)ACE于點(diǎn)M

AC平分AF=AM ,

又∵

AC=AE

∴△ACMACE都是等腰直角三角形

AM=MC=ME=AF, CE=2CM=2AF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax+c2的圖象大致為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在中, ,以上的一點(diǎn)為圓心,以為半徑的圓交于點(diǎn),交于點(diǎn)

)求證:

)如果是⊙的切線, 是切點(diǎn), 的中點(diǎn),當(dāng)時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2-3x+mm為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則關(guān)于x的一元二次方程x2-3x+m=0的兩實(shí)數(shù)根是(

A. x1=1,x2=-1 B. x1=1,x2=2 C. x1=1,x2=0 D. x1=1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字﹣1、1、2.隨機(jī)摸出一個(gè)小球(不放回)其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球其數(shù)字記為q,則滿足關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(-4,0),B(2,6)兩點(diǎn).

(1)求一次函數(shù)y=kx+b的表達(dá)式;

(2)在直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;

(3)求這個(gè)一次函數(shù)與坐標(biāo)軸圍成的三角形面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),記頂點(diǎn)都是整點(diǎn)的三角形為整點(diǎn)三角形.如圖,已知整點(diǎn)A2,3),B4,4),請?jiān)谒o網(wǎng)格區(qū)域(含邊界)上按要求畫整點(diǎn)三角形.

1)在圖1中畫一個(gè)PAB,使點(diǎn)P的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo);

2)在圖2中畫一個(gè)PAB,使點(diǎn)PB橫坐標(biāo)的平方和等于它們縱坐標(biāo)和的4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果ab,則-ac2________bc2(c0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生在素質(zhì)教育基地進(jìn)行社會(huì)實(shí)踐活動(dòng),幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:

(1)請問采摘的黃瓜和茄子各多少千克?

(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

同步練習(xí)冊答案