(2007•佛山)如圖,M,N,P,R分別是數(shù)軸上四個整數(shù)所對應的點,其中有一點是原點,并且MN=NP=PR=1.數(shù)a對應的點在M與N之間,數(shù)b對應的點在P與R之間,若|a|+|b|=3,則原點是( )

A.M或R
B.N或P
C.M或N
D.P或R
【答案】分析:先利用數(shù)軸特點確定a,b的關系從而求出a,b的值,確定原點.
解答:解:∵MN=NP=PR=1,
∴|MN|=|NP|=|PR|=1,
∴|MR|=3;
①當原點在N或P點時,|a|+|b|<3,又因為|a|+|b|=3,所以,原點不可能在N或P點;
②當原點在M、R時且|Ma|=|bR|時,|a|+|b|=3;
綜上所述,此原點應是在M或R點.
故選A.
點評:主要考查了數(shù)軸的定義和絕對值的意義.解此類題的關鍵是:先利用條件判斷出絕對值符號里代數(shù)式的正負性,再根據(jù)絕對值的性質(zhì)把絕對值符號去掉,把式子化簡后根據(jù)整點的特點求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2007•佛山)如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標系,y軸是拋物線的對稱軸,頂點E到坐標原點O的距離為6m.
(1)求拋物線的解析式;
(2)一輛貨運卡車高4.5m,寬2.4m,它能通過該隧道嗎?
(3)如果該隧道內(nèi)設雙行道,為了安全起見,在隧道正中間設有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?

查看答案和解析>>

科目:初中數(shù)學 來源:2007年廣東省佛山市中考數(shù)學試卷(解析版) 題型:解答題

(2007•佛山)如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標系,y軸是拋物線的對稱軸,頂點E到坐標原點O的距離為6m.
(1)求拋物線的解析式;
(2)一輛貨運卡車高4.5m,寬2.4m,它能通過該隧道嗎?
(3)如果該隧道內(nèi)設雙行道,為了安全起見,在隧道正中間設有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《四邊形》(08)(解析版) 題型:解答題

(2007•佛山)如圖,在Rt△ABC中,∠C=90°,M是AB的中點,AM=AN,MN∥AC.
(1)求證:MN=AC;
(2)如果把條件“AM=AN”改為“AM⊥AN”,其它條件不變,那么MN=AC不一定成立.如果再改變一個條件,就能使MN=AC成立.請你寫出改變的條件并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年廣東省佛山市中考數(shù)學試卷(解析版) 題型:填空題

(2007•佛山)如圖,△ABC內(nèi)接于⊙O,AD是⊙O的直徑,∠ABC=30°,則∠CAD=    度.

查看答案和解析>>

同步練習冊答案