【題目】我們?cè)谶^(guò)去的學(xué)習(xí)中已經(jīng)發(fā)現(xiàn)了如下的運(yùn)算規(guī)律:
(1)15×15=1×2×100+25=225;
(2)25×25=2×3×100+25=625;
(3)35×35=3×4×100+25=1225;
……
按照這種規(guī)律,第n個(gè)式子可以表示為
A. n×n=×(+1)×100+25=n2
B. n×n=×(+1)×100+25=n2
C. (n+5)×(n+5)=n×(n+1)×100+25=n2+10n+25
D. (10n+5)×(10n+5)=n×(n+l)×l00+25=100n2+100n+25
【答案】D
【解析】
根據(jù)已知的等式即可判斷規(guī)律.
∵(1)15×15=1×2×100+25=225,即(10+5)×(10+5)=1×(1+l)×l00+25=100+100+25
(2)25×25=2×3×100+25=625即(10×2+5)×(10×2+5)=2×(2+l)×l00+25=100×22+100×2+25
(3)35×35=3×4×100+25=1225即(10×3+5)×(10×3+5)=2×(3+l)×l00+25=100×32+100×3+25
∴第n個(gè)式子可以為(10n+5)×(10n+5)=n×(n+l)×l00+25=100n2+100n+25
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E是AD的中點(diǎn),AB=8 ,F(xiàn)是線段CE上的動(dòng)點(diǎn),則BF的最小值是( )
A.10
B.12
C.16
D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為 時(shí),四邊形AMDN是矩形;②當(dāng)AM的值為 時(shí),四邊形AMDN是菱形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點(diǎn) D 在 AB 上,DE⊥AB交 BC 于 E,點(diǎn) F 是 AE 的中點(diǎn)
(1) 寫(xiě)出線段 FD 與線段 FC 的關(guān)系并證明;
(2) 如圖 2,將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫(xiě)出你的結(jié)論并證明;
(3) 將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫(xiě)出線段 BF 的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1=80°,∠2=100°,∠C=∠D.
(1)判斷AC與DF的位置關(guān)系,并說(shuō)明理由;
(2)若∠C比∠A大20°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )
A. 如圖1,展開(kāi)后測(cè)得∠1=∠2
B. 如圖2,展開(kāi)后測(cè)得∠1=∠2且∠3=∠4
C. 如圖3,測(cè)得∠1=∠2
D. 如圖4,展開(kāi)后再沿CD折疊,兩條折痕的交點(diǎn)為O,測(cè)得OA=OB,OC=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A.當(dāng)a=1時(shí),函數(shù)圖象過(guò)點(diǎn)(﹣1,1)
B.當(dāng)a=﹣2時(shí),函數(shù)圖象與x軸沒(méi)有交點(diǎn)
C.若a>0,則當(dāng)x≥1時(shí),y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時(shí),y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.
(1)試判斷∠DEF與∠B的大小關(guān)系,并說(shuō)明理由;
(2)若D、E、F分別是AB、AC、CD邊上的中點(diǎn),S△DEF=4,S△ABC=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,矩形 ABCO,B點(diǎn)坐標(biāo)為(4,3),拋物線y=
經(jīng)過(guò)矩形ABCO的頂點(diǎn) B 、C ,D為BC的中點(diǎn),直線 AD y軸交 E點(diǎn),與拋物線 交于第四象限的 F點(diǎn).
(1)求該拋物線解析式與F點(diǎn)坐標(biāo);
(2)如圖2,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段 CB以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)M從 A出發(fā),沿線 AE以每秒 個(gè)單位長(zhǎng)度的速度向終點(diǎn)E運(yùn)動(dòng).過(guò)點(diǎn)P作PH ⊥OA,垂足為H ,連接 MP ,MH .設(shè)點(diǎn) P 的運(yùn)動(dòng)時(shí)間 t秒.
①問(wèn)EP+ PH+ HF是否有最小值?如果有,求出t的值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
②若△PMH是等腰三角形,請(qǐng)直接寫(xiě)出此時(shí)t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com