【題目】荊州市某水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個(gè)銷售旺季的80天里,銷售單價(jià)p(元/千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系為: ,日銷售量y(千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系如圖所示:
(1)求日銷售量y與時(shí)間t的函數(shù)關(guān)系式?
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?
(4)在實(shí)際銷售的前40天中,該養(yǎng)殖戶決定每銷售1千克小龍蝦,就捐贈m(m<7)元給村里的特困戶.在這前40天中,每天扣除捐贈后的日銷售利潤隨時(shí)間t的增大而增大,求m的取值范圍.
【答案】
(1)解:設(shè)解析式為y=kt+b,
將(1,198)、(80,40)代入,得:
,解得: ,
∴y=﹣2t+200(1≤x≤80,t為整數(shù))
(2)解:設(shè)日銷售利潤為w,則w=(p﹣6)y,
①當(dāng)1≤t≤40時(shí),w=( t+16﹣6)(﹣2t+200)=﹣ (t﹣30)2+2450,
∴當(dāng)t=30時(shí),w最大=2450;
②當(dāng)41≤t≤80時(shí),w=(﹣ t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100,
∴當(dāng)t=41時(shí),w最大=2301,
∵2450>2301,
∴第30天的日銷售利潤最大,最大利潤為2450元
(3)解:由(2)得:當(dāng)1≤t≤40時(shí),
w=﹣ (t﹣30)2+2450,
令w=2400,即﹣ (t﹣30)2+2450=2400,
解得:t1=20、t2=40,
由函數(shù)w=﹣ (t﹣30)2+2450圖象可知,當(dāng)20≤t≤40時(shí),日銷售利潤不低于2400元,
而當(dāng)41≤t≤80時(shí),w最大=2301<2400,
∴t的取值范圍是20≤t≤40,
∴共有21天符合條件
(4)解:設(shè)日銷售利潤為w,根據(jù)題意,得:
w=( t+16﹣6﹣m)(﹣2t+200)=﹣ t2+(30+2m)t+2000﹣200m,
其函數(shù)圖象的對稱軸為t=2m+30,
∵w隨t的增大而增大,且1≤t≤40,
∴由二次函數(shù)的圖象及其性質(zhì)可知2m+30≥40,
解得:m≥5,
又m<7,
∴5≤m<7
【解析】(1)根據(jù)函數(shù)圖象,利用待定系數(shù)法求解可得;(2)設(shè)日銷售利潤為w,分1≤t≤40和41≤t≤80兩種情況,根據(jù)“總利潤=每千克利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質(zhì)分別求得最值即可判斷;(3)求出w=2400時(shí)x的值,結(jié)合函數(shù)圖象即可得出答案;(4)依據(jù)(2)中相等關(guān)系列出函數(shù)解析式,確定其對稱軸,由1≤t≤40且銷售利潤隨時(shí)間t的增大而增大,結(jié)合二次函數(shù)的性質(zhì)可得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年起,深圳市實(shí)施行人闖紅燈違法處罰,處罰方式分為四類:“罰款20元”、“罰款50元”、“罰款100元”、“穿綠馬甲維護(hù)交通”.如圖是實(shí)施首日由某片區(qū)的執(zhí)法結(jié)果整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息,解答下列問題:
(1)實(shí)施首日,該片區(qū)行人闖紅燈違法受處罰一共人;
(2)在所有闖紅燈違法受處罰的行人中,穿綠馬甲維護(hù)交通所占的百分比是%;
(3)據(jù)了解,“罰款20元”人數(shù)是“罰款50元”人數(shù)的2倍,請補(bǔ)全條形統(tǒng)計(jì)圖;
(4)根據(jù)(3)中的信息,在扇形統(tǒng)計(jì)圖中,“罰款20元”所在扇形的圓心角等于度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動點(diǎn)P在拋物線上.
(1)b= , c= , 點(diǎn)B的坐標(biāo)為;(直接填寫結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)過動點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)以上信息,回答下列問題:
(1)楊老師采用的調(diào)查方式是(填“普查”或“抽樣調(diào)查”);
(2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完整,并估計(jì)全校共征集多少件作品?
(3)如果全校征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸的負(fù)半軸、y軸的正半軸上,點(diǎn)B在第二象限.將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸上,得到矩形ODEF,BC與OD相交于點(diǎn)M.若經(jīng)過點(diǎn)M的反比例函數(shù)y= (x<0)的圖象交AB于點(diǎn)N,S矩形OABC=32,tan∠DOE= ,則BN的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC= +1,點(diǎn)M,N分別是邊BC,AB上的動點(diǎn),沿MN所在的直線折疊∠B,使點(diǎn)B的對應(yīng)點(diǎn)B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ x+c與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,拋物線y=﹣ x2+bx+c經(jīng)過點(diǎn)A,B.
(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
(2)M(m,0)為x軸上一動點(diǎn),過點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)P,N.
①點(diǎn)M在線段OA上運(yùn)動,若以B,P,N為頂點(diǎn)的三角形與△APM相似,求點(diǎn)M的坐標(biāo);
②點(diǎn)M在x軸上自由運(yùn)動,若三個(gè)點(diǎn)M,P,N中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱M,P,N三點(diǎn)為“共諧點(diǎn)”.請直接寫出使得M,P,N三點(diǎn)成為“共諧點(diǎn)”的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=ax2+bx+c(a≠0),有下列四個(gè)結(jié)論:①abc>0;②4a+2b+c>0;③3a+c<0;④a+b≥m(am+b),其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com