精英家教網 > 初中數學 > 題目詳情

【題目】感知:如圖,在四邊形ABCD中,AB∥CD,∠B=90°,點P在BC邊上,當APD=90°時,可知△ABP∽△PCD.(不要求證明)

探究:如圖,在四邊形ABCD中,點P在BC邊上,當∠B=∠C=∠APD時,求證:△ABP∽△PCD.

拓展:如圖,在ABC中,點P是邊BC的中點,點D、E分別在邊AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,CE=4,則DE的長為   

【答案】感知:見解析;探究:證明見解析;拓展:

【解析】

感知:先判斷出,∠BAP=DPC,進而得出結論;

探究:同理根據兩角相等相等,兩三角形相似,進而得出結論;

拓展:利用相似三角形BDP∽△CPE得出比例式求出BD,三角形內角和定理證得ACABAC=AB;然后在直角ABC中由勾股定理求得AC=AB=6;最后利用在直角ADE中利用勾股定理來求DE的長度.

感知:∵∠APD=90°,

∴∠APB+DPC=90°,

∵∠B=90°,

∴∠APB+BAP=90°,

∴∠BAP=DPC,

ABCD,B=90°,

∴∠C=B=90°,

∴△ABP∽△DCP.

探究:∵∠APC=BAP+B,APC=APD+CPD,

∴∠BAP+B=APD+CPD.

∵∠B=APD,

∴∠BAP=CPD.

∵∠B=C,

ABP∽△PCD,

拓展:同探究的方法得出,BDP∽△CPE,

,

∵點P是邊BC的中點,

BP=CP=3,

CE=4,

,

BD=

∵∠B=C=45°,

∴∠A=180°﹣B﹣C=90°,

ACABAC=AB=6,

AD=AB﹣BD=6﹣=,AE=AC﹣CE=6﹣4=2,

RtADE中,DE=

故答案是:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若一次函數圖像的交點在第一象限,則一次函數的圖像不經過( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數ymx+nm0)的圖象與反比例函數yk0)的圖象交于第一、三象限內的AB兩點,與y軸交于點C,過點BBMx軸,垂足為點M,BMOM2,點A的縱坐標為4

1)求該反比例函數和一次函數的表達式;

2)直線ABx軸于點D,過點D作直線lx軸,如果直線l上存在點P,坐標平面內存在點Q.使四邊形OPAQ是矩形,求出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為積極配合我市文明城市創(chuàng)建,居委會組織了兩個檢查組,分別對轄區(qū)內新華園、清華園、德才園、御花園四個小區(qū)垃圾分類違規(guī)停車的情況進行抽查,每個檢查組隨機抽取轄區(qū)內的一個小區(qū)進行檢查.

(1)“違規(guī)停車檢查組抽到新華園小區(qū)的概率為_____;

(2)求兩個組恰好同時抽到御花園小區(qū)進行檢查的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知等邊ABC的邊長為8,以AB為直徑的圓交BC于點F.以C為圓心,CF長為半徑作圖,D是⊙C上一動點,EBD的中點,當AE最大時,BD的長為( 。

A. B. C. D. 12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,六邊形ABCDEF的六個角都是120°,邊長AB=1cm,BC=3cmCD=3cm,DE=2cm,則這個六邊形的周長是:__

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有長為 24m 的籬笆,現一面利用墻(墻的最大可用長度 a 10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬 AB xm,面積為 Sm2

1 S x 的函數關系式及 x 值的取值范圍;

2 要圍成面積為 45m2 的花圃,AB 的長是多少米?

3 AB 的長是多少米時,圍成的花圃的面積最大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學舉行“校園朗讀者”朗誦大賽,高、初中部根據初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績如圖所示.

1)根據圖示填寫表格;

平均分(分)

中位數(分)

眾數(分)

初中部

   

85

   

高中部

85

   

100

2)結合兩隊成績的平均數和中位數,   隊的決賽成績較好;

3)已知高中代表隊決賽成績的方差為160,計算初中代表隊決賽成績的方差,并判斷哪一個代表隊選手成績較為穩(wěn)定.(方差公式:S2[x12+x22++xn2]

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BCOB,點D上一動點,點ECD中點,連接BD分別交OCOE于點F,G

(1)求∠DGE的度數;

(2),求的值;

(3)記△CFB,△DGO的面積分別為S1,S2,若k,求的值.(用含k的式子表示)

查看答案和解析>>

同步練習冊答案