【題目】在△ABC中,∠C=90°,,D是AB的中點,則( )
A. B. 2C. D.
【答案】A
【解析】
首先在△ABC中,由sinA==,可設(shè)BC=5k,利用勾股定理求出AC==4k,那么tan∠B===,再根據(jù)直角三角形邊上的中線等于斜邊的一半得出CD=AD=AB,由等邊對等角得到∠BCD=∠B,∠ACD=∠A,所以tan∠BCD+tan∠ACD=tan∠B+tan∠A=+=.
解:當1-2k=0時,(1-2k)2x-2-1=0變形為--1=0,
此時方程有實數(shù)根;
當1-2k≠0時,
由題意知,△=4(k+1)+4(1-2k)≥0,且k+1≥0,
∴-1≤k≤2.
∴當-1≤k≤2時,關(guān)于x的方程(1-2k)x2-2-1=0有實數(shù)根.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin35°=0.57,cos35°=0.82,tan35°=0.70)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,BC=6cm,AC=8cm,點P從點A開始沿AC向點C以2厘米/秒的速度運動;與此同時,點Q從點C開始沿CB邊向點B以1厘米/秒的速度運動;如果P、Q分別從A、C同時出發(fā),當其中一點到達終點時,另一點也隨之停止運動.
(1)經(jīng)過幾秒,△CPQ的面積等于3cm2?
(2)在整個運動過程中,是否存在某一時刻t,使PQ恰好平分△ABC的面積?若存在,求出運動時間t;若不存在,請說明理由.
(3)是否存在某一時刻,PQ長為,如果存在,求出運動時間t。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將正方形對折后展開(圖④是連續(xù)兩次對折后再展開),再按圖示方法折疊,能夠得到一個直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關(guān)于原點對稱的△ABC;
(3) 在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點G,點E、F分別為AG、CD的中點,連接DE、FG.
(1)求證:四邊形DEGF是平行四邊形;
(2)當點G是BC的中點時,求證:四邊形DEGF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某數(shù)學興趣小組在活動課上測量學校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7 m,看旗桿頂部M的仰角為45°;小紅的眼睛與地面的距離(CD)是1.5 m,看旗桿頂部M的仰角為30°.兩人相距30米且位于旗桿兩側(cè)(點B,N,D在同一條直線上).求旗桿MN的高度.(參考數(shù)據(jù):≈1.414,≈1.732,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,P在對角線BD上,E在CB的延長線上,且PE=PC,過點P作PF⊥AE于F,直線PF分別交AB、CD于G、H,
(1)求證:DH=AG+BE;
(2)若BE=1,AB=3,求PE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com