【題目】某農(nóng)莊計(jì)劃在30畝空地上全部種植蔬菜和水果,菜農(nóng)小張和果農(nóng)小李分別承包了種植蔬菜和水果的任務(wù),小張種植每畝蔬菜的工資y(元)與種植面積m(畝)之間的函數(shù)關(guān)系如圖①所示,小李種植水果所得報(bào)酬z(元)與種植面積n(畝)之間的函數(shù)關(guān)系如圖②所示

(1)如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是元,小張應(yīng)得的工資總額是元,此時(shí),小李種植水果畝,小李應(yīng)得的報(bào)酬是元;
(2)設(shè)農(nóng)莊支付給小張和小李的總費(fèi)用為W(元),當(dāng)10<m<30時(shí),求W與m之間的函數(shù)關(guān)系式,并求出總費(fèi)用最大為多少?

【答案】
(1)140;2800;10;1500
(2)

解:當(dāng)10<n≤30時(shí),設(shè)z=kn+b(k≠0),

∵函數(shù)圖象經(jīng)過(guò)點(diǎn)(10,1500),(30,3900),

,

解得

所以,z=120n+300(10<n≤30);

當(dāng)10<m≤30時(shí),設(shè)y=km+b,

∵函數(shù)圖象經(jīng)過(guò)點(diǎn)(10,160),(30,120),

,

解得 ,

∴y=﹣2m+180,

∵m+n=30,

∴n=30﹣m,

∴①當(dāng)10<m≤20時(shí),10≤n<20,

w=m(﹣2m+180)+120n+300,

=m(﹣2m+180)+120(30﹣m)+300,

=﹣2m2+60m+3900,

②當(dāng)20<m≤30時(shí),0<n≤10,

w=m(﹣2m+180)+150n,

=m(﹣2m+180)+150(30﹣m),

=﹣2m2+30m+4500,

所以,w與m之間的函數(shù)關(guān)系式為w=

∵w=﹣2m2+60m+3900=﹣2(x﹣15)2+4125;

w=﹣2m2+30m+4500=﹣2(x﹣ 2+4612.5,

∴w的最大值為4612.5(元).

∴總費(fèi)用最大為4612.5元.


【解析】解:(1)由圖可知,如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是 (160+120)=140元,小張應(yīng)得的工資總額是:140×20=2800元,此時(shí),小李種植水果:30﹣20=10畝,小李應(yīng)得的報(bào)酬是1500元;所以答案是:140;2800;10;1500;
【考點(diǎn)精析】認(rèn)真審題,首先需要了解一次函數(shù)的圖象和性質(zhì)(一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,CAB=90°.試求:

(1)AD的長(zhǎng);

(2)ABE的面積;

(3)ACE和△ABE的周長(zhǎng)的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D為邊AB的中點(diǎn),DE∥BC,將△ABC沿線段DE折疊,使點(diǎn)A落在點(diǎn)F處,若∠B=50°,則∠EDF=_______,∠BDF=_______,若AB=10cm,則FD= ________cm。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1)= ; (2)= ; (3) ;

(4) ; (5) ; (6)a3·a3 ;

(7) (x3)5 ; (8)(-2x2y3)3 ; (9) (x-y)6÷(x-y)3 ;

(10)a2b(ab-4b2) (11)(2a-3b)(2a+5b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AB=15,BC=9,點(diǎn)P,Q分別在BC,AC上,CP=3x,CQ=4x(0<x<3).點(diǎn)D在線段PQ上,且PD=PC.

(1)求證:PQ∥AB;
(2)若點(diǎn)D在∠BAC的平分線上,求CP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,且OC=OB.

(1)求此拋物線的解析式;
(2)若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE,CE,求四邊形BOCE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)點(diǎn)P在拋物線的對(duì)稱軸上,若線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好也落在此拋物線上,求點(diǎn)P的坐標(biāo).
(4)連接AC,H是拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)H作AC的平行線交x軸于點(diǎn)F.是否存在這樣的點(diǎn)F,使得以A,C,H,F(xiàn)為頂點(diǎn)所組成的四邊形是平行四邊形?若存在,求出滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DE⊥ABE,DF⊥ACF,若BD=CD、BE=CF,

(1)求證:AD平分∠BAC;

(2)已知AC=20,AB=12,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=16cm,AD=6cm,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)點(diǎn)B為止,點(diǎn)Q以2cm/s的速度向點(diǎn)D移動(dòng).

(1)P、Q兩點(diǎn)從出發(fā)開(kāi)始,經(jīng)過(guò)幾秒時(shí),四邊形PBCQ的面積為33cm2?
(2)P、Q兩點(diǎn)從出發(fā)開(kāi)始,經(jīng)過(guò)幾秒時(shí),點(diǎn)P和點(diǎn)Q的距離為10cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解本校九年級(jí)學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級(jí)隨機(jī)抽取了一部分學(xué)生的期末數(shù)學(xué)成績(jī)?yōu)闃颖,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答以下問(wèn)題:

(1)這次隨機(jī)抽取的學(xué)生共有多少人?

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)這個(gè)學(xué)校九年級(jí)共有學(xué)生1200人,若分?jǐn)?shù)為80分(含80分)以上為優(yōu)秀,請(qǐng)估計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案