【題目】如圖,點(diǎn)D為邊AB的中點(diǎn),DE∥BC,將△ABC沿線段DE折疊,使點(diǎn)A落在點(diǎn)F處,若∠B=50°,則∠EDF=_______,∠BDF=_______,若AB=10cm,則FD= ________cm。

【答案】50°80°5

【解析】

根據(jù)過(guò)三角形一邊的中點(diǎn)且平行于另一邊的直線必平分第三邊可得E是AC的中點(diǎn),進(jìn)而得到DE是△ABC的中位線,DE∥BC,再根據(jù)兩直線平行,同位角相等可得∠ADE=∠B ,根據(jù)翻折變換的性質(zhì)可得∠ADE=∠EDF ,然后根據(jù)平角等于180°列式計(jì)算即可得解;根據(jù)線段中點(diǎn)的定義求出AD,再根據(jù)翻折的性質(zhì)可得FD=AD.

點(diǎn)D為邊AB的中點(diǎn), DE∥BC,
∴E是AC的中點(diǎn),

∴DE是△ABC的中位線,

∵DE∥BC,
∴∠ADE=∠B=50°,
由翻折的性質(zhì)得, ∠ADE=∠EDF=50°,
∴∠BDF=180°-∠ADE-∠EDF=180°-50°-50°=80°,
∵AB=10cm,點(diǎn)D是AB的中點(diǎn),
∴AD=AB=×10=5cm,
由翻折的性質(zhì)得,FD=AD=5cm.
故答案為:50°,80°,5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=( 。

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】⊙O的半徑為13cm,AB,CD是⊙O的兩條弦,AB∥CD,AB=24cm,CD=10cm.則AB和CD之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于拋物線y=ax2﹣4ax+3a下列說(shuō)法:①對(duì)稱軸為x=2;②拋物線與x軸兩交點(diǎn)的坐標(biāo)分別為(1,0),(3,0);③頂點(diǎn)坐標(biāo)為(2,﹣a);④若a<0,當(dāng)x>2時(shí),函數(shù)y隨x的增大而增大,其中正確的結(jié)論有( )個(gè).
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面積.

(2)若每種植1平方米草皮需要200元,問(wèn)總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,將正方形的邊AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,連接BE、DE,過(guò)點(diǎn)A作AF⊥BE于F,交直線DE于P.

(1)如圖①,若∠DAE=40°,求∠P的度數(shù);
(2)如圖②,若90°<∠DAE<180°,其它條件不變,試探究線段AP、DP、EP之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)繼續(xù)旋轉(zhuǎn)線段AD,若旋轉(zhuǎn)角180°<∠DAE<270°,則線段AP、DP、EP之間的數(shù)量關(guān)系為(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=kx+b圖象經(jīng)過(guò)點(diǎn)(1,3)和(4,6)

①試求;

②畫出這個(gè)一次函數(shù)圖象;

③這個(gè)一次函數(shù)與y軸交點(diǎn)坐標(biāo)是(   

當(dāng)x 時(shí),y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)莊計(jì)劃在30畝空地上全部種植蔬菜和水果,菜農(nóng)小張和果農(nóng)小李分別承包了種植蔬菜和水果的任務(wù),小張種植每畝蔬菜的工資y(元)與種植面積m(畝)之間的函數(shù)關(guān)系如圖①所示,小李種植水果所得報(bào)酬z(元)與種植面積n(畝)之間的函數(shù)關(guān)系如圖②所示

(1)如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是元,小張應(yīng)得的工資總額是元,此時(shí),小李種植水果畝,小李應(yīng)得的報(bào)酬是元;
(2)設(shè)農(nóng)莊支付給小張和小李的總費(fèi)用為W(元),當(dāng)10<m<30時(shí),求W與m之間的函數(shù)關(guān)系式,并求出總費(fèi)用最大為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)B在x軸的正半軸上,D(0,8),將矩形OBCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.

(1)如圖①,已知折痕與邊BC交于點(diǎn)A,若OD=2CP,求點(diǎn)A的坐標(biāo).
(2)若圖①中的點(diǎn) P 恰好是CD邊的中點(diǎn),求∠AOB的度數(shù).
(3)如圖②,在(I)的條件下,擦去折痕AO,線段AP,連接BP,動(dòng)點(diǎn)M在線段OP上(點(diǎn)M與P,O不重合),動(dòng)點(diǎn)N在線段OB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E,試問(wèn)當(dāng)點(diǎn)M,N在移動(dòng)過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求出線段EF的長(zhǎng)度(直接寫出結(jié)果即可

查看答案和解析>>

同步練習(xí)冊(cè)答案