已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正確的是( )
A.sinB=
B.cosB=
C.tanB=
D.cotB=
【答案】分析:Rt△ABC中,根據(jù)勾股定理就可以求出斜邊AB,根據(jù)三角函數(shù)的定義就可以解決.
解答:解:由勾股定理知,AB===
∴sinB=,cosB=,cotB=
故選C.
點評:本題考查了銳角三角函數(shù)的定義.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB邊所在的直線為軸,將△ABC旋轉(zhuǎn)一周,則所得幾何體的表面積是(  )
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延長線于E,BA、CE延長線相交于F點.
求證:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,兩直角邊AC、BC的長是關(guān)于x的方程x2-(m+5)x+6m=0的兩個實數(shù)根.求m的值及AC、BC的長(BC>AC).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,已知Rt△ABC中,∠C=90°∠A=36°,以C為圓心,CB為半徑的圓交AB于P,則弧BP的度數(shù)是
72
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知Rt△ABC中,∠ACB=90°,CA=CB,點D在BC的延長線上,點E在AC上,且CD=CE,延長BE交AD于點F,求證:BF⊥AD.

查看答案和解析>>

同步練習冊答案