已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點分別為(﹣1,0),(3,0).對于下列命題:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正確的有( 。

 

A.

3個

B.

2個

C.

1個

D.

0個

考點:

二次函數(shù)圖象與系數(shù)的關系。

分析:

首先根據(jù)二次函數(shù)圖象開口方向可得a>0,根據(jù)圖象與y軸交點可得c<0,再根據(jù)二次函數(shù)的對稱軸x=﹣,結合圖象與x軸的交點可得對稱軸為x=1,結合對稱軸公式可判斷出①的正誤;根據(jù)對稱軸公式結合a的取值可判定出b>0,根據(jù)a、b、c的正負即可判斷出②的正誤;利用b﹣2a=0時,求出a﹣2b+4c<0,再利用當x=4時,y>0,則16a+4b+c>0,由①知,b=﹣2a,得出8a+c>0.

解答:

解:根據(jù)圖象可得:a>0,c>0,

對稱軸:x=﹣>0,

①∵它與x軸的兩個交點分別為(﹣1,0),(3,0),

∴對稱軸是x=1,

∴﹣=1,

∴b+2a=0,

故①錯誤;

②∵a>0,

∴b<0,

∴abc<0,故②正確;

③a﹣2b+4c<0;

∵b+2a=0,

∴a﹣2b+4c=a+2b﹣4b+4c=﹣4b+4c,

∵a﹣b+c=0,

∴4a﹣4b+4c=0,

∴﹣4b+4c=﹣4a,

∵a>0,

∴a﹣2b+4c=﹣4b+4c=﹣4a<0,

故此選項正確;

④根據(jù)圖示知,當x=4時,y>0,

∴16a+4b+c>0,

由①知,b=﹣2a,

∴8a+c>0;

故④正確;

故正確為:①②③三個.

故選:A.

點評:

此題主要考查了二次函數(shù)圖象與系數(shù)的關系,關鍵是熟練掌握①二次項系數(shù)a決定拋物線的開口方向,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左; 當a與b異號時(即ab<0),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c決定拋物線與y軸交點,拋物線與y軸交于(0,c).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標;(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年廣東省廣州市海珠區(qū)九年級上學期期末數(shù)學試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應值如下表,寫出方程ax2+bx+c=0的一個正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案