已知二次函數(shù)
(1)若點在此二次函數(shù)的圖象上,則     (填 “>”、“=”或“<”);
(2)如圖,此二次函數(shù)的圖象經(jīng)過點,正方形ABCD的頂點C、D在x軸上, A、B恰好在二次函數(shù)的圖象上,求圖中陰影部分的面積之和.

(1);(2).

解析試題分析:
解:(1)由二次函數(shù)圖象知:其圖像關于 軸對稱,
又∵點在此二次函數(shù)的圖象上,
也在此二次函數(shù)的圖象上,
∵當 時函數(shù)是增函數(shù),
.
(2)∵二次函數(shù)的圖象經(jīng)過點(0,-4),
∴m = -4.  
∵四邊形ABCD為正方形,
又∵拋物線和正方形都是軸對稱圖形,且y軸為它們的公共對稱軸,
∴OD=OC,.
設點B的坐標為(n,2n)(n >0),
∵點B在二次函數(shù)的圖象上,
.
解得,(舍負).
∴點B的坐標為(2,4).
=24=8.
考點:二次函數(shù)的圖象.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

李經(jīng)理在某地以10元/千克的批發(fā)價收購了2 000千克核桃,并借一倉庫儲存.在存放過程中,平均每天有6千克的核桃損耗掉,而且倉庫允許存放時間最多為60天.若核桃的市場價格在批發(fā)價的基礎上每天每千克上漲0.5元。
(1)存放x天后,將這批核桃一次性出售,如果這批核桃的銷售總金額為y元,試求出y與x之間的函數(shù)關系式;
(2)如果倉庫存放這批核桃每天需要支出各種費用合計340元,李經(jīng)理要想獲得利潤22 500元,需將這批核桃存放多少天后出售?(利潤=銷售總金額-收購成本-各種費用)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線y=x2+bx+c經(jīng)過(2,-1)和(4,3)兩點.
(1)求出這個拋物線的解析式;
(2)將該拋物線向右平移1個單位,再向下平移3個單位,得到的新拋物線解析式為             .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知函數(shù)y=mx2-6x+1(m是常數(shù)).
⑴求證:不論m為何值,該函數(shù)的圖象都經(jīng)過y軸上的一個定點;
⑵若該函數(shù)的圖象與x軸只有一個交點,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:拋物線與x軸交于點A、B(A左B右),其中點B的坐標為(7,0),設拋物線的頂點為C.

(1)求拋物線的解析式和點C的坐標;
(2)如圖1,若AC交y軸于點D,過D點作DE∥AB交BC于E.點P為DE上一動點,PF⊥AC于F,PG⊥BC于G.設點P的橫坐標為a,四邊形CFPG的面積為y,求y與a的函數(shù)關系式和y的最大值;
(3)如圖2,在條件(2)下,過P作PH⊥x軸于點H,連結(jié)FH、GH,是否存在點P,使得△PFH與△PHG相似?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y=x2–kx+k–1(k>2).

(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個交點;
(2)拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,若,求拋物線的表達式;
(3)以(2)中的拋物線上一點P(m,n)為圓心,1為半徑作圓,直接寫出:當m取何值時,x軸與相離、相切、相交.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某汽車租賃公司擁有20輛汽車.據(jù)統(tǒng)計,當每輛車的日租金為400元時,可全部租出;當未租出的車將增加1輛,每輛車的日租金每增加50元,;公司平均每日的各項支出共4800元.設公司每日租出工輛車時,日收益為y元.(日收益=日租金收入一平均每日各項支出)
(1)公司每日租出x輛車時,每輛車的日租金為      元(用含x的代數(shù)式表示);
(2)當每日租出多少輛時,租賃公司日收益最大?最大是多少元?
(3)當每日租出多少輛時,租賃公司的日收益不盈也不虧?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關系式,并確定自變量x的取值范圍.
(2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?
(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某商店將進價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,若這種商品每件的銷售價每提高0.5元,其銷售量就減少10件.問(1)每件售價定為多少元時,才能使利潤為640元?(2)每件售價定為多少元時,才能使利潤最大?

查看答案和解析>>

同步練習冊答案