某商店將進(jìn)價(jià)為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價(jià)減少銷售量的辦法增加利潤(rùn),若這種商品每件的銷售價(jià)每提高0.5元,其銷售量就減少10件.問(wèn)(1)每件售價(jià)定為多少元時(shí),才能使利潤(rùn)為640元?(2)每件售價(jià)定為多少元時(shí),才能使利潤(rùn)最大?
(1)12或16元;(2)14.
解析試題分析:(1)根據(jù)等量關(guān)系“利潤(rùn)=(售價(jià)-進(jìn)價(jià))×銷量”列出函數(shù)關(guān)系式;(2)根據(jù)(1)中的函數(shù)關(guān)系式求得利潤(rùn)最大值.
試題解析:(1)設(shè)每件售價(jià)定為x元時(shí),才能使每天利潤(rùn)為640元,
則,解得:x1=12,x2=16.
答:應(yīng)將每件售價(jià)定為12或16元時(shí),能使每天利潤(rùn)為640元.
(2)設(shè)利潤(rùn)為y:
則,
∴當(dāng)售價(jià)定為14元時(shí),獲得最大利潤(rùn);最大利潤(rùn)為720元.
考點(diǎn):二次函數(shù)和一元二次方程的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù).
(1)若點(diǎn)與在此二次函數(shù)的圖象上,則 (填 “>”、“=”或“<”);
(2)如圖,此二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),正方形ABCD的頂點(diǎn)C、D在x軸上, A、B恰好在二次函數(shù)的圖象上,求圖中陰影部分的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線與y軸交于點(diǎn)A,拋物線上的一點(diǎn)P在第四象限,連接AP與x軸交于點(diǎn)C,,且S△AOC=1,過(guò)點(diǎn)P作PB⊥y軸于點(diǎn)B.
(1)求BP的長(zhǎng);
(2)求拋物線與x軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
為了落實(shí)國(guó)務(wù)院的指示精神,某地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為每千克多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線過(guò)兩點(diǎn)(m,0)、(n,0),且,拋物線于雙曲線(x>0)的交點(diǎn)為(1,d).
(1)求拋物線與雙曲線的解析式;
(2)已知點(diǎn)都在雙曲線(x>0)上,它們的橫坐標(biāo)分別為,O為坐標(biāo)原點(diǎn),記,點(diǎn)Q在雙曲線(x<0)上,過(guò)Q作QM⊥y軸于M,記。
求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知點(diǎn)B坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,說(shuō)出△ABC外接圓的圓心位置,并求出圓心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米.
(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.
①求拋物線的解析式;
②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?
(2)如圖2,若把橋看做是圓的一部分.
①求圓的半徑;
②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
某公司營(yíng)銷兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下信息:
信息1:銷售種產(chǎn)品所獲利潤(rùn)(萬(wàn)元)與所售產(chǎn)品(噸)之間存在二次函數(shù)關(guān)系
.當(dāng)時(shí), ;當(dāng)時(shí),.
信息2:銷售種產(chǎn)品所獲利潤(rùn) (萬(wàn)元)與所售產(chǎn)品(噸)之間存在正比例函數(shù)關(guān)系.
根據(jù)以上信息,解答下列問(wèn)題:(1)求二次函數(shù)解析式;
(2)該公司準(zhǔn)備購(gòu)進(jìn)兩種產(chǎn)品共10噸,請(qǐng)?jiān)O(shè)計(jì)一個(gè)營(yíng)銷方案,使銷售兩種產(chǎn)品獲得的利潤(rùn)之和最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在等邊△ABC中,AB=3,D、E分別是AB、AC上的點(diǎn),且DE∥BC,將△ADE沿DE翻折,與梯形BCED重疊的部分記作圖形L.
(1)求△ABC的面積;
(2)設(shè)AD=x,圖形L的面積為y,求y關(guān)于x的函數(shù)解析式;
(3)已知圖形L的頂點(diǎn)均在⊙O上,當(dāng)圖形L的面積最大時(shí),求⊙O的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com