【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行.從內(nèi)到外,它們的邊長(zhǎng)依次為2,46,8,,頂點(diǎn)依次用A1A2,A3,A4表示,則頂點(diǎn)A55的坐標(biāo)是( )

A.(1313 B.(13,13 C.(14,14 D.(-14,-14

【答案】C.

【解析】

試題解析:55=4×13+3,A55與A3在同一象限,即都在第一象限,

根據(jù)題中圖形中的規(guī)律可得:

3=4×0+3,A3的坐標(biāo)為(0+1,0+1),即A3(1,1),

7=4×1+3,A7的坐標(biāo)為(1+1,1+1),A7(2,2),

11=4×2+3,A11的坐標(biāo)為(2+1,2+1),A11(3,3);

55=4×13+3,A55(14,14),A55的坐標(biāo)為(13+1,13+1);

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“同角或等角的補(bǔ)角相等( )

A. 定義B. 基本事實(shí)C. 定理D. 假命題

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(2,0),B(3,3)及原點(diǎn)O,頂點(diǎn)為C.

(1)求拋物線的解析式;

(2)若點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且以A,O,D,E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)D的坐標(biāo);

(3)P是拋物線上第二象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作PMx軸,垂足為M,是否存在點(diǎn)P使得以點(diǎn)P,M,A為頂點(diǎn)的三角形與BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于兩個(gè)數(shù),M=2008×20092009,N=2009×20082008.則( 。

A. M=N B. M>N C. M<N D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級(jí)當(dāng)空氣污染指數(shù)達(dá)0—50時(shí)為1級(jí),質(zhì)量為優(yōu);51—100時(shí)為2級(jí),質(zhì)量為良;101—200時(shí)為3級(jí),輕度污染;201—300時(shí)為4級(jí),中度污染;300以上時(shí)為5級(jí),重度污染.某城市隨機(jī)抽取了2015年某些天的空氣質(zhì)量檢測(cè)結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列各題:

(1)本次調(diào)查共抽取了 天的空氣質(zhì)量檢測(cè)結(jié)果,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)扇形統(tǒng)計(jì)圖中3級(jí)空氣質(zhì)量所對(duì)應(yīng)的圓心角為 °;

(3)如果空氣污染達(dá)到中度污染或者以上,將不適宜進(jìn)行戶外活動(dòng),請(qǐng)你估計(jì)2015年該城市有多少天不適宜開(kāi)展戶外活動(dòng).(說(shuō)明:2015年共365天)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:2x+7+3x﹣2,其中x=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,(x+y2=16,(xy2=8,那么xy的值是(

A. 2B. 2C. 3D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若1+2+3+…+n=a , 求代數(shù)式(xny)(xn-1y2)(xn-2y3)…(x2yn-1)(xyn)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線.

1)求證:△ADE≌△CBF;

(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案