【題目】問題情境:在綜合與實踐課上,同學們以“已知三角形三邊的長度,求三角形面積”為主題開展數(shù)學活動,小穎想到借助正方形網(wǎng)格解決問題.圖 1,圖 2 都是 8×8 的正方形網(wǎng)格,每個小正方形的邊長均為 1,每個小正方形的頂點稱為格點.
操作發(fā)現(xiàn):小穎在圖 1 中畫出△ABC,其頂點 A,B,C 都是格點,同時構造正方形 BDEF, 使它的頂點都在格點上,且它的邊 DE,EF 分別經(jīng)過點 C,A,她借助此圖求出了△ABC 的面積.
(1)在圖 1 中,小穎所畫的△ABC 的三邊長分別是 AB= ,BC= ,AC
= ;△ABC 的面積為 . 解決問題:
(2)已知△ABC 中,AB=,BC=2 ,AC=5 ,請你根據(jù)小穎的思路,在圖 2的正方形網(wǎng)格中畫出△ABC,并直接寫出△ABC 的面積.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3,延長CB至點M,使S△ABM=,過點B作BN⊥AM,垂足為N,O是對角線AC,BD的交點,連接ON,則ON的長為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形(長方形)ABCD沿EF折疊,使點B與點D重合,點A落在G處,連接BE,DF,則下列結論:①DE=DF,②FB=FE,③BE=DF,④B、E、G三點在同一直線上,其中正確的是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,延長DA于點E,使得,連接BE.
求證:四邊形AEBC是矩形;
過點E作AB的垂線分別交AB,AC于點F,G,連接CE交AB于點O,連接OG,若,,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,邊長為6,D是BC邊上的動點,∠EDF=60°.
(1)求證:△BDE∽△CFD;
(2)當BD=1,CF=3時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】感知:如圖①,在正方形中,是一點,是延長線上一點,且,求證:;
拓展:在圖①中,若在,且,則成立嗎?為什么?
運用:如圖②在四邊形中,,,,是上一點,且,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為積極響應“弘揚傳統(tǒng)文化”的號召,某學校組織全校1200名學生進行經(jīng)典詩詞誦讀活動,并在活動之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動的持續(xù)效果,學校團委在活動啟動之初,隨機抽取40名學生調(diào)查“一周詩詞誦背數(shù)量”,根據(jù)調(diào)查結果繪制成的統(tǒng)計圖如圖所示.
大賽結束后一個月,再次抽查這部分學生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計表如下:
一周詩詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 1 | 3 | 5 | 6 | 10 | 15 |
請根據(jù)調(diào)查的信息
(1)活動啟動之初學生“一周詩詞誦背數(shù)量”的中位數(shù)為_____________,平均數(shù)為___________;
(2)選擇適當?shù)慕y(tǒng)計量,至少從兩個不同的角度分析兩次調(diào)查的相關數(shù)據(jù),評價該校經(jīng)典詩詞誦背系列活動的效果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,動點E,F分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.
(1)如圖1,當點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關系和位置關系,并說明理;
(2)如圖2,當E,F分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時CE:CD的值;
(3)如圖3,當E,F分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.
圖1 圖2 圖3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com