如圖1,拋物線軸交于兩點(diǎn),與軸交于點(diǎn),連結(jié)AC,若
(1)求拋物線的解析式;
(2)拋物線對稱軸上有一動(dòng)點(diǎn)P,當(dāng)時(shí),求出點(diǎn)的坐標(biāo);
(3)如圖2所示,連結(jié),是線段上(不與、重合)的一個(gè)動(dòng)點(diǎn).過點(diǎn)作直線,交拋物線于點(diǎn),連結(jié),設(shè)點(diǎn)的橫坐標(biāo)為.當(dāng)t為何值時(shí),的面積最大?最大面積為多少?
(1) y=x2-3x+2;;(2)(,)或(,);(3)t=1時(shí),S△BCN的最大值為1.

試題分析:(1)已知了C點(diǎn)的坐標(biāo),即可得到OC的長,根據(jù)∠OAC的正切值即可求出OA的長,由此可得到A點(diǎn)的坐標(biāo),將A、C的坐標(biāo)代入拋物線中,即可確定該二次函數(shù)的解析式;
(2)根據(jù)拋物線的解析式即可確定其對稱軸方程,由此可得到點(diǎn)P的橫坐標(biāo);若∠APC=90°,則∠PAE和∠CPD是同角的余角,因此兩角相等,則它們的正切值也相等,由此可求出線段PE的長,即可得到點(diǎn)P點(diǎn)的坐標(biāo);(用相似三角形求解亦可)
(3)根據(jù)B、C的坐標(biāo)易求得直線BC的解析式,已知了點(diǎn)M的橫坐標(biāo)為t,根據(jù)直線BC和拋物線的解析式,即可用t表示出M、N的縱坐標(biāo),由此可求得MN的長,以MN為底,B點(diǎn)橫坐標(biāo)的絕對值為高,即可求出△BNC的面積(或者理解為△BNC的面積是△CMN和△MNB的面積和),由此可得到關(guān)于S(△BNC的面積)、t的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求得S的最大值及對應(yīng)的t的值.
試題解析:(1)∵拋物線y=x2+bx+c過點(diǎn)C(0,2),
∴c=2;
又∵tan∠OAC==2,
∴OA=1,即A(1,0);
又∵點(diǎn)A在拋物線y=x2+bx+2上,
∴0=12+b×1+2,b=-3;
∴拋物線對應(yīng)的二次函數(shù)的解析式為y=x2-3x+2;
(2)存在.
過點(diǎn)C作對稱軸l的垂線,垂足為D,如圖所示,

∴x=-
∴AE=OE-OA=,
∵∠APC=90°,
∴tan∠PAE=tan∠CPD,
,即,
解得PE=或PE=,
∴點(diǎn)P的坐標(biāo)為(,)或(,).
(3)如圖所示,易得直線BC的解析式為:y=-x+2,

∵點(diǎn)M是直線l′和線段BC的交點(diǎn),
∴M點(diǎn)的坐標(biāo)為(t,-t+2)(0<t<2),
∴MN=-t+2-(t2-3t+2)=-t2+2t,
∴S△BCN=S△MNC+S△MNB=MN·t+MN·(2-t),
=MN·(t+2-t)=MN=-t2+2t(0<t<2),
∴S△BCN=-t2+2t=-(t-1)2+1,
∴當(dāng)t=1時(shí),S△BCN的最大值為1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,將拋物線y=3x2先向右平移1個(gè)單位,再向上平移2個(gè)單位,得到的拋物線的解析式是( 。
A.y=3(x+1)2+2B.y=3(x+1)2﹣2
C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)(a≠0)的圖象經(jīng)過點(diǎn)A,點(diǎn)B.
(1)求二次函數(shù)的表達(dá)式;
(2)若反比例函數(shù)(x>0)的圖象與二次函數(shù)(a≠0)的圖象在第一象限內(nèi)交于點(diǎn),落在兩個(gè)相鄰的正整數(shù)之間,請你直接寫出這兩個(gè)相鄰的正整數(shù);
(3)若反比例函數(shù)(x>0,k>0)的圖象與二次函數(shù)(a≠0)的圖象在第一象限內(nèi)交于點(diǎn),且,試求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形紙片ABCD中,AB=5,AD=4.
(1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出一個(gè)正方形.你能否在該矩形中裁剪出一個(gè)面積最大的正方形,最大面積是多少?說明理由;
(2)請用矩形紙片ABCD剪拼成一個(gè)面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點(diǎn)都在網(wǎng)格的格點(diǎn)上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線經(jīng)過點(diǎn)A(3,2),B(0,1)和點(diǎn)C
(1)求拋物線的解析式;
(2)如圖,若拋物線的頂點(diǎn)為P,點(diǎn)A關(guān)于對稱軸的對稱點(diǎn)為M,過M的直線交拋物線于另一點(diǎn)N(N在對稱軸右邊),交對稱軸于F,若,求點(diǎn)F的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點(diǎn)G,使△BMA與△MBG相似?若存在,求點(diǎn)G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;
(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線(b,c均為常數(shù))與x軸交于兩點(diǎn),與y軸交于點(diǎn)
(1)求該拋物線對應(yīng)的函數(shù)表達(dá)式;
(2)若P是拋物線上一點(diǎn),且點(diǎn)P到拋物線的對稱軸的距離為3,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時(shí)內(nèi)其血液中酒精含量y(毫克/百毫升)與時(shí)間(時(shí))的關(guān)系可近似地用二次函數(shù)刻畫;1.5時(shí)后(包括1.5時(shí))y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學(xué)模型計(jì)算:
①喝酒后幾時(shí)血液中的酒精含量達(dá)到最大值?最大值為多少?
②當(dāng)=5時(shí),y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,拋物線y=-x2+bx+c的頂點(diǎn)為Q,與x軸交于A(-1,0)、B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及其頂點(diǎn)Q的坐標(biāo);
(2)在該拋物線的對稱軸上求一點(diǎn)P,使得△PAC的周長最小,請?jiān)趫D中畫出點(diǎn)P的位置,并求點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)D是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),過D作DE⊥x軸,垂足為E.
①有一個(gè)同學(xué)說:“在第一象限拋物線上的所有點(diǎn)中,拋物線的頂點(diǎn)Q與x軸相距最遠(yuǎn),所以當(dāng)點(diǎn)D運(yùn)動(dòng)至點(diǎn)Q時(shí),折線D-E-O的長度最長”,這個(gè)同學(xué)的說法正確嗎?請說明理由.
②若DE與直線BC交于點(diǎn)F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點(diǎn)D的坐標(biāo);若不能,請簡要說明理由.

查看答案和解析>>

同步練習(xí)冊答案