如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點(diǎn)P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;
(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
(1)見解析   (2)不變化  見解析   (3)存在 最小值6
(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進(jìn)而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案。
(2)先由AAS證明△ABP≌△QBP,從而由HL得出△BCH≌△BQH,即可得CH=QH。因此,△PDH的周長=PD+DH+PH=AP+PD+DH+HC=AD+CD=8為定值。
(3)利用已知得出△EFM≌△BPA,從而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函數(shù)的最值求出即可。
解:(1)如圖1,∵PE=BE,∴∠EBP=∠EPB.

又∵∠EPH=∠EBC=90°,
∴∠EPH﹣∠EPB=∠EBC﹣∠EBP,即∠PBC=∠BPH。
又∵AD∥BC,∴∠APB=∠PBC!唷螦PB=∠BPH。
(2)△PHD的周長不變?yōu)槎ㄖ?。證明如下:
如圖2,過B作BQ⊥PH,垂足為Q。

由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
∴△ABP≌△QBP(AAS)!郃P=QP,AB=BQ。
又∵AB=BC,∴BC=BQ。
又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH(HL)。∴CH=QH。
∴△PHD的周長為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8。
(3)如圖3,過F作FM⊥AB,垂足為M,則FM=BC=AB。

又∵EF為折痕,∴EF⊥BP。
∴∠EFM+∠MEF=∠ABP+∠BEF=90°!唷螮FM=∠ABP。
又∵∠A=∠EMF=90°,AB=ME,∴△EFM≌△BPA(ASA)。
∴EM=AP=x.
∴在Rt△APE中,(4﹣BE)2+x2=BE2,即
。
又∵四邊形PEFG與四邊形BEFC全等,
。
,∴當(dāng)x=2時,S有最小值6。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用長為32米的籬笆圍一個矩形養(yǎng)雞場,設(shè)圍成的矩形一邊長為x米,面積為y平方米.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,圍成的養(yǎng)雞場面積為60平方米?
(3)能否圍成面積為70平方米的養(yǎng)雞場?如果能,請求出其邊長;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在y軸和x軸上,AB∥x軸,sinC=,點(diǎn)P從O點(diǎn)出發(fā),沿邊OA、AB、BC勻速運(yùn)動,點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿邊CO勻速運(yùn)動。點(diǎn)P與點(diǎn)Q同時出發(fā),其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)P運(yùn)動的時間為t(s),△CPQ的面積為S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖2中曲線段OE、線段EF與曲線段FG給出.
(1)點(diǎn)P的運(yùn)動速度為     cm/s, 點(diǎn)B、C的坐標(biāo)分別為          ;
(2)求曲線FG段的函數(shù)解析式;
(3)當(dāng)t為何值時,△CPQ的面積是四邊形OABC的面積的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,拋物線軸交于兩點(diǎn),與軸交于點(diǎn),連結(jié)AC,若
(1)求拋物線的解析式;
(2)拋物線對稱軸上有一動點(diǎn)P,當(dāng)時,求出點(diǎn)的坐標(biāo);
(3)如圖2所示,連結(jié)是線段上(不與、重合)的一個動點(diǎn).過點(diǎn)作直線,交拋物線于點(diǎn),連結(jié)、,設(shè)點(diǎn)的橫坐標(biāo)為.當(dāng)t為何值時,的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將一條拋物線向左平移2個單位后得到了y=2x2的函數(shù)圖象,則這條拋物線是(   )  
A.y=2x2+2B.y=2x2-2C.y=2(x-2)2D.y=2(x+2)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,AC=4,BC=2,點(diǎn)A、C分別在x軸、y軸上,當(dāng)點(diǎn)A在x軸上運(yùn)動時,點(diǎn)C隨之在y軸上運(yùn)動.在運(yùn)動過程中,點(diǎn)B到原點(diǎn)的最大距離是(    )

A.6      B.2      C.2           D.2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線可以由拋物線平移得到,則下列平移過程正確的是
A.先向左平移2個單位,再向上平移3個單位
B.先向左平移2個單位,再向下平移3個位
C.先向右平移2個單位,再向下平移3個單位
D.先向右平移2個單位,再向上平移3個單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=9,BC=3,點(diǎn)E是沿A→B方向運(yùn)動,點(diǎn)F是沿A→D→C方向運(yùn)動.現(xiàn)E、F兩點(diǎn)同時出發(fā)勻速運(yùn)動,設(shè)點(diǎn)E的運(yùn)動速度為每秒1個單位長度,點(diǎn)F的運(yùn)動速度為每秒3個單位長度,當(dāng)點(diǎn)F運(yùn)動到C點(diǎn)時,點(diǎn)E立即停止運(yùn)動.連接EF,設(shè)點(diǎn)E的運(yùn)動時間為x秒,EF的長度為y個單位長度,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)≠0)圖象如圖所示,下列結(jié)論:①>0;②=0;③當(dāng)≠1時,;④>0;⑤若,且,則=2.其中正確的有( 。
A.①②③ B.②④ C.②⑤ D.②③⑤

查看答案和解析>>

同步練習(xí)冊答案