【題目】如圖,在ABCD中,點(diǎn)E是AD邊上一點(diǎn),AE:ED=1:2,連接AC、BE交于點(diǎn)F.若S△AEF=1,則S四邊形CDEF=_______.
【答案】11
【解析】
先根據(jù)平行四邊形的性質(zhì)易得,根據(jù)相似三角形的判定可得△AFE∽△CFB,再根據(jù)相似三角形的性質(zhì)得到△BFC的面積,,進(jìn)而得到△AFB的面積,即可得△ABC的面積,再根據(jù)平行四邊形的性質(zhì)即可得解.
解:∵AE:ED=1:2,
∴AE:AD=1:3,
∵AD=BC,
∴AE:BC=1:3,
∵AD∥BC,
∴△AFE∽△CFB,
∴,
∴,
∴S△BCF=9,
∵,
∴S△AFB=3,
∴S△ACD =S△ABC = S△BCF+S△AFB=12,
∴S四邊形CDEF=S△ACD﹣S△AEF=12﹣1=11.
故答案為:11.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村啟動(dòng)“脫貧攻堅(jiān)”項(xiàng)目,根據(jù)當(dāng)?shù)氐牡乩項(xiàng)l件,要在一座高為1000m的上種植一種經(jīng)濟(jì)作物.農(nóng)業(yè)技術(shù)人員在種植前進(jìn)行了主要相關(guān)因素的調(diào)查統(tǒng)計(jì),結(jié)果如下:
①這座山的山腳下溫度約為22°C,山高h(單位:m)每增加100m,溫度T(單位:°C)下降約0.5°C;
②該作物的種植成活率p受溫度T影響,且在19°C時(shí)達(dá)到最大.大致如表:
溫度T°C | 21 | 20.5 | 20 | 19.5 | 19 | 18.5 | 18 | 17.5 |
種植成活率p | 90% | 92% | 94% | 96% | 98% | 96% | 94% | 92% |
③該作物在這座山上的種植量w受山高h影響,大致如圖1:
(1)求T關(guān)于h的函數(shù)解析式,并求T的最小值;
(2)若要求該作物種植成活率p不低于92%,根據(jù)上述統(tǒng)計(jì)結(jié)果,山高h為多少米時(shí)該作物的成活量最大?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘漁船位于燈塔A的南偏西75°方向的B處,距離A處30海里,漁船沿北偏東30°方向追尋魚(yú)群,航行一段時(shí)間后,到達(dá)位于A處北偏西20°方向的C處,漁船出現(xiàn)了故障立即向正在燈塔A處的巡邏船發(fā)出求救信號(hào).巡邏船收到信號(hào)后以40海里每小時(shí)的速度前往救助,請(qǐng)問(wèn)巡邏船多少分鐘能夠到達(dá)C處?(參考數(shù)據(jù):≈1.4,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,最后結(jié)果精確到1分鐘).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O.
(1)如圖1,E,G分別是OB,OC上的點(diǎn),CE與DG的延長(zhǎng)線相交于點(diǎn)F.若DF⊥CE,求證:OE=OG;
(2)如圖2,H是BC上的點(diǎn),過(guò)點(diǎn)H作EH⊥BC,交線段OB于點(diǎn)E,連結(jié)DH交CE于點(diǎn)F,交OC于點(diǎn)G.若OE=OG,
①求證:∠ODG=∠OCE;
②當(dāng)AB=1時(shí),求HC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°.
①若AB=CD=1,AB∥CD,求對(duì)角線BD的長(zhǎng).
②若AC⊥BD,求證:AD=CD;
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點(diǎn)P是對(duì)角線BD上一點(diǎn),且BP=2PD,過(guò)點(diǎn)P作直線分別交邊AD,BC于點(diǎn)E,F(xiàn),使四邊形ABFE是等腰直角四邊形,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等邊△ABC中,AB=6cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度沿AB勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā)以同樣的速度沿BC的延長(zhǎng)線方向勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),過(guò)點(diǎn)P作PE⊥AC于E,PQ交AC邊于D,線段BC的中點(diǎn)為M,連接PM.
(1)當(dāng)t為何值時(shí),△CDQ與△MPQ相似;
(2)在點(diǎn)P、Q運(yùn)動(dòng)過(guò)程中,點(diǎn)D、E也隨之運(yùn)動(dòng),線段DE的長(zhǎng)度是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由,若不發(fā)生變化,求DE的長(zhǎng);
(3)如圖2,將△BPM沿直線PM翻折,得△B'PM,連接AB',當(dāng)t為何值時(shí),AB'的值最小?并求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】昆明市某中學(xué)“綜合實(shí)踐活動(dòng)”棋類社團(tuán)前兩次購(gòu)買的兩種材質(zhì)的圍棋采購(gòu)如表(近期兩種材質(zhì)的圍棋的售價(jià)一直不變):
塑料圍棋 | 玻璃圍棋 | 總價(jià)(元) | |
第一次(盒) | |||
第二次(盒) |
(1)若該社團(tuán)計(jì)劃再采購(gòu)這兩種材質(zhì)的圍棋各盒,則需要多少元;
(2)若該社團(tuán)準(zhǔn)備購(gòu)買這兩種材質(zhì)的圍棋共盒,且要求塑料圍棋的數(shù)量不多于玻璃圍棋數(shù)量的倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中點(diǎn)為圓心,OA的長(zhǎng)為半徑作半圓交AC于點(diǎn)D,則圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,,是邊的中點(diǎn),點(diǎn)是正方形內(nèi)一動(dòng)點(diǎn),,連接,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,連接,.
(1)如圖1,求證:;
(2)如圖2,若,,三點(diǎn)共線,求點(diǎn)到直線的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com