【題目】函數(shù)y=與y=-kx2+k(k≠0)在同一直角坐標(biāo)系中的圖象可能是( )
【答案】B.
【解析】
試題解析:由解析式y(tǒng)=-kx2+k可得:拋物線對(duì)稱軸x=0;
A、由雙曲線的兩支分別位于二、四象限,可得k<0,則-k>0,拋物線開口方向向上、拋物線與y軸的交點(diǎn)為y軸的負(fù)半軸上;本圖象與k的取值相矛盾,故A錯(cuò)誤;
B、由雙曲線的兩支分別位于一、三象限,可得k>0,則-k<0,拋物線開口方向向下、拋物線與y軸的交點(diǎn)在y軸的正半軸上,本圖象符合題意,故B正確;
C、由雙曲線的兩支分別位于一、三象限,可得k>0,則-k<0,拋物線開口方向向下、拋物線與y軸的交點(diǎn)在y軸的正半軸上,本圖象與k的取值相矛盾,故C錯(cuò)誤;
D、由雙曲線的兩支分別位于一、三象限,可得k>0,則-k<0,拋物線開口方向向下、拋物線與y軸的交點(diǎn)在y軸的正半軸上,本圖象與k的取值相矛盾,故D錯(cuò)誤.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC三個(gè)頂點(diǎn)A、B、C的坐標(biāo)分別為A(2,﹣1)、B(1,﹣3)、C(4,﹣2).
(1)在直角坐標(biāo)系中畫出△ABC;
(2)把△ABC向左平移4個(gè)單位,再向上平移5個(gè)單位,恰好得到三角形△A1B1C1,試寫出△A1B1C1三個(gè)頂點(diǎn)的坐標(biāo),并在直角坐標(biāo)系中描出這些點(diǎn);
(3)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方差表示一組數(shù)據(jù)的
A. 數(shù)據(jù)個(gè)數(shù)B. 平均水平C. 變化范圍D. 波動(dòng)大小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,過點(diǎn)A作AG∥DB交CB的延長線于點(diǎn)G.
(1)求證:DE∥BF;
(2)若∠G=90°,求證:四邊形DEBF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=16,將矩形ABCD沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則折痕EF的長為( )
A.6 B.12 C.2 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線y=﹣x+3交AB,BC分別于點(diǎn)M,N,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com