【題目】某研究機(jī)構(gòu)經(jīng)過抽樣調(diào)查,發(fā)現(xiàn)當(dāng)?shù)?/span>1500個老年人的養(yǎng)老模式主要有A,B,C,D,E五種,統(tǒng)計結(jié)果如圖,那么下列說法不正確的是( 。
A. 選擇A型養(yǎng)老的頻率是
B. 可以估計當(dāng)?shù)?/span>30000個老年人中有8000人選擇C型養(yǎng)老
C. 樣本容量是1500
D. 總體是當(dāng)?shù)?/span>1500個老年人的養(yǎng)老模式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在△ABC中,AB=AC,∠BAC=90°.點(diǎn)D為射線BC上一動點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問題:
(1)當(dāng)點(diǎn)D在線段BC上時(與點(diǎn)B不重合),如圖甲,線段CF、BD之間的位置關(guān)系為 , 數(shù)量關(guān)系為 .
(2)當(dāng)點(diǎn)D在線段BC的延長線上時,如圖乙,①中的結(jié)論是否仍然成立,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寒假結(jié)束了,為了了解九年級學(xué)生寒假體育鍛煉情況,王老師調(diào)查了九年級所有學(xué)生寒假體育鍛煉時間,并隨即抽取10名學(xué)生進(jìn)行統(tǒng)計,制作出如下統(tǒng)計圖表:
編號 | 成績 | 編號 | 成績 |
① | B | ⑥ | A |
② | A | ⑦ | B |
③ | B | ⑧ | C |
④ | B | ⑨ | B |
⑤ | C | ⑩ | A |
根據(jù)統(tǒng)計圖表信息解答下列問題:
(1)將條形統(tǒng)計圖補(bǔ)充完整;
(2)若用扇形統(tǒng)計圖來描述10名學(xué)生寒假體育鍛煉情況,分別求A,B,C三個等級對應(yīng)的扇形圓心角的度數(shù);
(3)已知這次統(tǒng)計中共有60名學(xué)生寒假體育鍛煉時間是A等,請你估計這次統(tǒng)計中B等,C等的學(xué)生各有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)M在CD邊上,點(diǎn)N在正方形ABCD外部,且滿足∠CMN=90°,CM=MN.連接AN,CN,取AN的中點(diǎn)E,連接BE,AC,交于F點(diǎn).
(1) ①依題意補(bǔ)全圖形;
②求證:BE⊥AC.
(2)請?zhí)骄烤段BE,AD,CN所滿足的等量關(guān)系,并證明你的結(jié)論.
(3)設(shè)AB=1,若點(diǎn)M沿著線段CD從點(diǎn)C運(yùn)動到點(diǎn)D,則在該運(yùn)動過程中,線段EN所掃過的面積為______________(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市種植某種綠色蔬菜,全部用來出口.為了擴(kuò)大出口規(guī)模,該市決定對這種蔬菜的種植實(shí)行政府補(bǔ)貼,規(guī)定每種植﹣畝這種蔬菜一次性補(bǔ)貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補(bǔ)貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會相應(yīng)降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺補(bǔ)貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補(bǔ)貼政策實(shí)施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補(bǔ)貼數(shù)額x之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額x定為多少?并求出總收益w的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)E、F分別在AB、BC上,△DEF為等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分9分)如圖,四邊形ABCD中AB∥CD,AB≠CD,BD=AC。
(1)求證:AD=BC;
(2)若E,F,G,H分別是AB,CD,AC,BD的中點(diǎn),求證:線段EF與線段GH互相垂直平分。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式中:
①由3x=﹣4系數(shù)化為1得x=﹣;
②由5=2﹣x移項(xiàng)得x=5﹣2;
③由 去分母得2(2x﹣1)=1+3(x﹣3);
④由2(2x﹣1)﹣3(x﹣3)=1去括號得4x﹣2﹣3x﹣9=1.
其中正確的個數(shù)有( )
A. 0個 B. 1個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)G.
(1)填空:如圖1,當(dāng)點(diǎn)G恰好在BC邊上時,四邊形ABGE的形狀是___________形;
(2)如圖2,當(dāng)點(diǎn)G在矩形ABCD內(nèi)部時,延長BG交DC邊于點(diǎn)F.
求證:BF=AB+DF;
若AD=AB,試探索線段DF與FC的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com