【題目】如圖,等腰ABC的底邊BC的長為2cm,面積是6cm2,腰AB的垂直平分線EFAB于點(diǎn)E,交AC于點(diǎn)F.若DBC邊上的中點(diǎn),M為線段EF上一動點(diǎn),則BDM的周長最短為____________cm

【答案】7

【解析】

連接AD,由于△ABC是等腰三角形,點(diǎn)DBC邊的中點(diǎn),故ADBC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點(diǎn)B關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,故AD的長為BMMD的最小值,由此即可得出結(jié)論.

連接AD,

∵△ABC是等腰三角形,點(diǎn)DBC邊的中點(diǎn),

ADBC,

SABCBCAD×2×AD6,解得AD6cm

EF是線段AB的垂直平分線,

∴點(diǎn)B關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,

AD的長為BMMD的最小值,

∴△BDM的周長最短=(BMMD)+BDADBC6×2617cm

故答案為7cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下面直角坐標(biāo)系中,已知,三點(diǎn),其中、滿足關(guān)系式.

1)求、、的值;

2)如果在第二象限內(nèi)有一點(diǎn),請用含的式子表示四邊形的面積;

3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積與的面積相等?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MNAD相交于點(diǎn)M,與BD相交于點(diǎn)O,與BC相交于點(diǎn)N,連接BMDN

求證:四邊形BMDN是菱形;

,,求菱形BMDN的面積和對角線MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB90°,CDABD,∠BAC的平分線分別交BC,CDE、F

1)試說明△CEF是等腰三角形.

2)若點(diǎn)E恰好在線段AB的垂直平分線上,試說明線段AC與線段AB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地要建造一個圓形噴水池,在水池中央垂直于地面安裝一個柱子OA,O恰為水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下.在過OA的任一平面上,建立平面直角坐標(biāo)系(如圖),水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式是,則下列結(jié)論:(1)柱子OA的高度為3m;(2)噴出的水流距柱子1m處達(dá)到最大高度;(3)噴出的水流距水平面的最大高度是4m;(4)水池的半徑至少要3m才能使噴出的水流不至于落在池外.其中正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藥廠銷售部門根據(jù)市場調(diào)研結(jié)果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進(jìn)行預(yù)測,井建立如下模型:設(shè)第t個月該原料藥的月銷售量為P(單位:噸),Pt之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Qt之間滿足如下關(guān)系:Q=

(1)當(dāng)8<t≤24時,求P關(guān)于t的函數(shù)解析式;

(2)設(shè)第t個月銷售該原料藥的月毛利潤為w(單位:萬元)

①求w關(guān)于t的函數(shù)解析式;

②該藥廠銷售部門分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對應(yīng)的月銷售量P的最小值和最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人共同計(jì)算一道整式乘法題:(2x+a)(3x+b).甲由于把第一個多項(xiàng)式中的“+a”看成了“﹣a”,得到的結(jié)果為6x2+11x10;乙由于漏抄了第二個多項(xiàng)式中x的系數(shù),得到的結(jié)果為2x29x+10

(1)a、b的值.

(2)計(jì)算這道乘法題的正確結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點(diǎn)AB,與軸交于點(diǎn)C。過點(diǎn)CCDx軸,交拋物線的對稱軸于點(diǎn)D,連結(jié)BD。已知點(diǎn)A坐標(biāo)為(-10)。

1)求該拋物線的解析式;

2)求梯形COBD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人.

1)求第一輪后患病的人數(shù);(用含x的代數(shù)式表示)

2)在進(jìn)入第二輪傳染之前,有兩位患者被及時隔離并治愈,問第二輪傳染后總共是否會有21人患病的情況發(fā)生,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案