(2010•博野縣二模)如圖所示,若圓心角∠AOB=120°,則圓周角∠ACB為( )

A.30°
B.60°
C.120°
D.100°
【答案】分析:根據(jù)同弧所對(duì)圓心角是圓周角2倍求解即可.
解答:解:∵∠AOB=120°
∴∠ACB=∠AOB=60°.
故選B.
點(diǎn)評(píng):此題主要考查圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年中考復(fù)習(xí)專項(xiàng)訓(xùn)練《實(shí)驗(yàn)與操作》(解析版) 題型:解答題

(2010•博野縣二模)圖①是一張長與寬不相等的矩形紙片,同學(xué)們都知道按圖②所示的折疊方法可以裁剪出一個(gè)正方形紙片和一個(gè)矩形紙片(如圖③),

(1)實(shí)驗(yàn):
將這兩張紙片分別按圖④、⑤所示的折疊方法進(jìn)行:

請(qǐng)你分別在圖④、⑤的最右邊的圖形中用虛線畫出折痕,并順次連接每條折痕的端點(diǎn),所圍成的四邊形分別是什么四邊形?
(2)當(dāng)原矩形紙片的AB=4,BC=6時(shí),分別求出(1)中連接折痕各端點(diǎn)所得四邊形的面積,并求出它們的面積比;
(3)當(dāng)紙片ABCD的長和寬滿足怎樣的數(shù)量關(guān)系時(shí)先后得到的兩個(gè)四邊形的面積比等于(2)所得到的兩個(gè)四邊形的面積比?
(4)用(2)中所得到的兩張紙片,分別裁剪出那兩個(gè)四邊形,用剩下的8張紙片拼出兩個(gè)周長不相等的等腰梯形,用圖表示并標(biāo)明主要數(shù)據(jù),分別求出兩梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省南通市初三中考數(shù)學(xué)模擬測試卷(解析版) 題型:填空題

(2010•博野縣二模)廊坊某儲(chǔ)運(yùn)部緊急調(diào)撥一批物資,調(diào)進(jìn)物資共用4小時(shí),調(diào)進(jìn)物資2小時(shí)后開始調(diào)出物資(調(diào)進(jìn)物資與調(diào)出物資的速度均保持不變).儲(chǔ)運(yùn)部庫存物資S(噸)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示,這批物資從開始調(diào)進(jìn)到全部調(diào)出需要的時(shí)間是    小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河北省保定市博野縣中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•博野縣二模)圖①是一張長與寬不相等的矩形紙片,同學(xué)們都知道按圖②所示的折疊方法可以裁剪出一個(gè)正方形紙片和一個(gè)矩形紙片(如圖③),

(1)實(shí)驗(yàn):
將這兩張紙片分別按圖④、⑤所示的折疊方法進(jìn)行:

請(qǐng)你分別在圖④、⑤的最右邊的圖形中用虛線畫出折痕,并順次連接每條折痕的端點(diǎn),所圍成的四邊形分別是什么四邊形?
(2)當(dāng)原矩形紙片的AB=4,BC=6時(shí),分別求出(1)中連接折痕各端點(diǎn)所得四邊形的面積,并求出它們的面積比;
(3)當(dāng)紙片ABCD的長和寬滿足怎樣的數(shù)量關(guān)系時(shí)先后得到的兩個(gè)四邊形的面積比等于(2)所得到的兩個(gè)四邊形的面積比?
(4)用(2)中所得到的兩張紙片,分別裁剪出那兩個(gè)四邊形,用剩下的8張紙片拼出兩個(gè)周長不相等的等腰梯形,用圖表示并標(biāo)明主要數(shù)據(jù),分別求出兩梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河北省保定市博野縣中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2010•博野縣二模)如圖,若干個(gè)正方體形狀的積木擺成如圖所示的塔形,平放于桌面上,上面正方體下底的四個(gè)頂點(diǎn)是下面相鄰正方體的上底各邊的中點(diǎn),最下面的正方體棱長為1.如果塔形露在外面的面積超過8,則正方體的個(gè)數(shù)至少是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河北省中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:選擇題

(2010•博野縣二模)如圖所示,若圓心角∠AOB=120°,則圓周角∠ACB為( )

A.30°
B.60°
C.120°
D.100°

查看答案和解析>>

同步練習(xí)冊(cè)答案