【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC,BD于點E,P,連接OE,∠ADC=60°,,則下列結論:①∠CAD=30°②③④,正確的個數是______________
【答案】①②③④
【解析】
①先根據角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60°的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質和等腰三角形的性質得:∠ACE=30°,最后由平行線的性質可作判斷;
②先根據三角形中位線定理得:OE=AB=,OE∥AB,根據勾股定理計算OC=和OB的長,可得BD的長;③因為∠BAC=90°,根據平行四邊形的面積公式可作判斷;④根據三角形中位線定理及直角三角形30°角的性質可作判斷.
解:①∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,∠ABC=∠ADC=60°,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴△ABE是等邊三角形,
∴AE=BE=1,
∵BC=2,
∴EC=1,
∴AE=EC,
∴∠EAC=∠ACE,
∵∠AEB=∠EAC+∠ACE=60°,
∴∠ACE=30°,
∵AD∥BC,
∴∠CAD=∠ACE=30°,
故①正確;
②∵BE=EC,OA=OC,
∴OE=AB=,OE∥AB,
∴∠EOC=∠BAC=60°+30°=90°,
Rt△EOC中,OC=,
∴OA=OC=,
Rt△OAB中,OB=,
∴BD=2OB=,
故②正確;
③由②知:∠BAC=90°,
∴SABCD=ABAC,
故③正確;
④由②知:OE是△ABC的中位線,
∴OE=AB,
∵∠BAC=90°,∠ACB=30°,
∴AB=BC=AD,
∴,
故④正確;
本題正確的有:①②③④,4個,
故答案為:①②③④.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的面積為20cm2,對角線相交于點O.以AB、AO為鄰邊畫平行四邊形AOC1B,對角線相交于點O ;以AB、AO 為鄰邊畫平行四邊形AO1C2B,對角線相交于點O2 :……以此類推,則平行四邊形AO4C5B的面積為( )
A.cm2B.cm2C.cm2D. cm2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:基本不等式≤(a>0,b>0),當且僅當a=b時,等號成立.其中我們把叫做正數a、b的算術平均數,叫做正數a、b的幾何平均數,它是解決最大(。┲祮栴}的有力工具.
例如:在x>0的條件下,當x為何值時,x+有最小值,最小值是多少?
解:∵x>0,>0∴≥即是x+≥2
∴x+≥2
當且僅當x=即x=1時,x+有最小值,最小值為2.
請根據閱讀材料解答下列問題
(1)若x>0,函數y=2x+,當x為何值時,函數有最小值,并求出其最小值.
(2)當x>0時,式子x2+1+≥2成立嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖象經過點(0,-3).
(1)求這個二次函數的函數解析式;
(2)當x取何值時,函數y的值隨著x的增大而增大;
(3)當x取何值時,函數的值為0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,點D是邊BC的中點,以CD為直徑作⊙O,交邊AC于點P,連接BP,交AD于點E.
(1)求證:AD是⊙O的切線;
(2)如果PB是⊙O的切線,BC=4,求PE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在 ABCD 中,AE、BF 分別平分∠DAB 和∠ABC,交 CD 于點 E、F,AE、BF 相交于點 M.
(1)求證:AE⊥BF;
(2)判斷線段 DF 與 CE 的大小關系,并予以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個涵洞成拋物線形,它的截面如圖,現測得:當水面寬AB=1.6 m時,涵洞頂點與水面的距離為2.4 m,離開水面1.5 m處是涵洞寬ED.
(1)求拋物線的解析式;
(2)求ED的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】七年級某班部分學生植樹,若每人平均植樹8棵,還剩7棵;若每人植樹9棵,則有一名學生植樹的棵樹多于3棵而小于6棵.若設學生人數為x人,則植樹棵樹為(8x7)人,則下面給出的不等式(組)中,能準確求出學生人數與種植樹木數量的是( )
A.8x769(x1)B.8x739(x1)
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB∥CD,直線AB、CD被直線EF所截,EG平分∠BEF,FG平分∠DFE,
(1)若∠AEF=50°,求∠EFG的度數.
(2)判斷EG與FG的位置關系,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com