【題目】如圖,DE是△ABC的中位線,延長(zhǎng)DE到F,使EF=DE,連接BF
(1)求證:BF=DC;
(2)求證:四邊形ABFD是平行四邊形.
【答案】
(1)證明:連接DB,CF,
∵DE是△ABC的中位線,
∴CE=BE,
∵EF=ED,
∴四邊形CDBF是平行四邊形,
∴CD=BF
(2)證明:∵四邊形CDBF是平行四邊形,
∴CD∥FB,
∴AD∥BF,
∵DE是△ABC的中位線,
∴DE∥AB,
∴DF∥AB,
∴四邊形ABFD是平行四邊形
【解析】(1)連接DB,CF,利用對(duì)角線互相平分的四邊形是平行四邊形可得四邊形CDBF是平行四邊形,進(jìn)而可得CD=BF;(2)由(1)可得CD∥FB,再利用三角形中位線定理可得DF∥AB,根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形可得結(jié)論.
【考點(diǎn)精析】利用三角形中位線定理和平行四邊形的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;兩組對(duì)邊分別平行的四邊形是平行四邊形:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題是( )
A.對(duì)角線相等的四邊形是菱形B.有一組鄰邊相等的平行四邊形是菱形
C.四條邊相等的四邊形是矩形D.對(duì)角線互相垂直的平行四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將6.18×10﹣3化為小數(shù)的是( )
A.0.000618
B.0.00618
C.0.0618
D.0.618
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】暑假就要來(lái)了,小明為自己制定了慢跑鍛煉計(jì)劃,某日小明從家出發(fā)沿解放路慢跑,已知他離家的距離s(千米)與時(shí)間t(分鐘)之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象直接回答下列問(wèn)題:
(1)小明離開(kāi)家的最遠(yuǎn)距離是多少千米,他在120分鐘內(nèi)共跑了多少千米;
(2)小明在這次慢跑過(guò)程中,停留所用的時(shí)間為多少分鐘;
(3)小明在這段時(shí)間內(nèi)慢跑的最快速度是每小時(shí)多少千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AE⊥BD,垂足為E,ED=3BE,點(diǎn)P、Q分別在BD,AD上,則AP+PQ的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)O是正方形OABC的一個(gè)頂點(diǎn),已知點(diǎn)B坐標(biāo)為(1,7),過(guò)點(diǎn)P(a,0)(a>0)作PE⊥x軸,與邊OA交于點(diǎn)E(異于點(diǎn)O、A),將四邊形ABCE沿CE翻折,點(diǎn)A′、B′分別是點(diǎn)A、B的對(duì)應(yīng)點(diǎn),若點(diǎn)A′恰好落在直線PE上,則a的值等于( )
A. B. C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,P是對(duì)角線BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線上,且PA=PE,PE交CD于F.
(1)PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com