【題目】如圖,直線l經(jīng)過平面直角坐標系的原點O,且與x軸正方向的夾角是30°,點A的坐標是(0,1),點B在直線l上,且AB∥x軸,則點B的坐標是 , 現(xiàn)將△ABO繞點B順時針旋轉(zhuǎn)到△A1BO1的位置,使點A的對應點A1落在直線l上,再將△A1BO1繞點A1順時針旋轉(zhuǎn)到△A1B1O2的位置,使點O1的對應點O2落在直線l上,順次旋轉(zhuǎn)下去…,則點A6的橫坐標是

【答案】( ,1); +
【解析】解:∵點A的坐標是(0,1),∠ABO=30°,AB∥x軸,

∴AB= ,AO=1,

∴點B的坐標為( ,1),

由題可得,A1的橫坐標為 + ,

A2的橫坐標為 + ,

A3 3+ ,

A4的橫坐標為3+3 ,

A5的橫坐標為 +4 ,

A6的橫坐標為 + ,

所以答案是:( ,1), +

【考點精析】本題主要考查了銳角三角函數(shù)的定義的相關知識點,需要掌握銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某游泳館普通票價20/暑假為了促銷,新推出兩種優(yōu)惠卡

金卡售價600/每次憑卡不再收費

銀卡售價150/,每次憑卡另收10

暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設游泳x次時,所需總費用為y

(1)分別寫出選擇銀卡、普通票消費時,yx之間的函數(shù)關系式;

(2)在同一坐標系中,若三種消費方式對應的函數(shù)圖象如圖所示,請求出點A、B、C的坐標;

(3)請根據(jù)函數(shù)圖象直接寫出選擇哪種消費方式更合算

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技進步,無人機的應用越來越廣,如圖,在某一時刻,無人機上的探測器顯示,從無人機A處看一棟樓頂部B點的仰角和看與頂部B在同一鉛垂線上高樓的底部c的俯角.

(1)如果上述仰角與俯角分別為30。與60。 , 且該樓的高度為30米,求該時刻無人機的豎直高度CD.
(2)如果上述仰角與俯角分別為α與β,且該樓的高度為m米.求用α、β、m表示該時刻無人機的豎直高度CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等邊△ABC中,點D,E分別是BC,AC邊上的中點,點P為AB邊上的一個動點,設AP=x,連接PE,PD,PC,DE,其中某條線段的長為y,若表示y與x的函數(shù)關系的圖象大致如圖2所示,則這條線段可能是( )

A.線段PE
B.線段PD
C.線段PC
D.線段DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學興趣小組在活動時,老師提出了這樣一個問題:如圖1,在中,,,DBC的中點,求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長ADE,使,請補充完整證明的推理過程.

求證:

證明:延長AD到點E,使

已作,

______,

中點定義,

______,

探究得出AD的取值范圍是______;

(感悟)解題時,條件中若出現(xiàn)中點”“中線等字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個三角形中.

(問題解決)

如圖2中,,AD的中線,,,且,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小慧兩位同學在數(shù)學活動課中,把長為30cm,寬為10cm的長方形白紙條粘合起來,小明按如圖甲所示的方法粘合起來得到長方形ABCD,粘合部分的長度為6cm,小慧按如圖乙所示的方法粘合起來得到長方形A1B1C1D1,黏合部分的長度為4cm

1)若按小明或小慧的兩種方法各粘貼n張,所得的長方形長AB______,A1B1______(用含n的代數(shù)式表示)

2)若長為30cm,寬為10cm的長方形白紙條共有100張,求小明應分配到多少張長方形白紙條,才能使小明和小慧按各自要求黏合起來的長方形面積相等(要求100張長方形白紙條全部用完).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織甲、乙兩隊開展“保護生態(tài)環(huán)境知識競賽”,滿分為10分,得分均為整數(shù),規(guī)定得分達到6分及以上為合格,達到9分及以上為優(yōu)秀,如圖是甲、乙兩隊學生這次競賽成績分布條形統(tǒng)計圖.

根據(jù)以上信息,請解答下面的問題:
(1)在下面甲、乙兩隊的成績統(tǒng)計表中,a= , b=c=

平均分

中位數(shù)

眾數(shù)

方差

合格率

優(yōu)秀率

甲隊

a

6

c

2.76

90%

20%

乙隊

7.2

b

8

1.36

80%

10%


(2)小華同學說:“我在這次比賽中得到了7分,這在我所在的小隊成績中屬于中等偏上的位置!”觀察(1)中的表格,小華是隊的學生;(填“甲”或“乙”)
(3)甲隊同學認為:甲隊的合格率、優(yōu)秀率均高于乙隊,所以甲隊的成績好于乙隊.但乙隊同學不同意甲隊同學的說法,認為乙隊的成績要好于甲隊.請你寫出兩條支持乙隊同學觀點的理由.
(4)學校要從從甲、乙兩隊獲得優(yōu)秀的學生中,選取兩名同學參加市級比賽,則恰好同時選中的兩人均為甲隊學生的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為開展第二課堂,組織調(diào)查了本校300名學生各自最喜愛的一項體育活動,制成了如下扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖判斷下列說法,其中正確的一項是(  )

A. 在調(diào)查的學生中最喜愛籃球的人數(shù)是50

B. 喜歡羽毛球在統(tǒng)計圖中所對應的圓心角是144°

C. 其他所占的百分比是20%

D. 喜歡球類運動的占50%

查看答案和解析>>

同步練習冊答案